Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 11(1): 691-698, 2019 Jan 09.
Article in English | MEDLINE | ID: mdl-30543392

ABSTRACT

It was reported that the main obstacle of Li2ZrO3 as high-temperature CO2 absorbents is the very slow CO2 sorption kinetics, which are ascribed to the gradual formation of compact zirconia and carbonate shells along with inner unreacted lithium zirconate cores; accordingly, the "sticky" Li+ and O2- ions have to travel a long distance through the solid shells by diffusion. We report here that three-dimensional interconnected nanoporous Li2ZrO3 exhibiting ultrafast kinetics is promising for CO2 sorption. Specifically, nanoporous Li2ZrO3 (LZ-NP) exhibited a rapid sorption rate of 10.28 wt %/min with an uptake of 27 wt % of CO2. Typically, the k1 values of LZ-NP (kinetic parameters extracted from sorption kinetics) were nearly 1 order of magnitude higher than the previously reported conventional Li2ZrO3 reaction systems. Its sorption capacity of 25 wt % within ∼4 min is 2 orders of magnitude faster than those obtained using spherical Li2ZrO3 powders. Furthermore, nanoporous Li2ZrO3 exhibited good stability over 60 absorption-desorption cycles, showing its potential for practical CO2 capture applications. CO2 adsorption isotherms for Li2ZrO3 absorbents were successfully modeled using a double-exponential equation at various CO2 partial pressures.

2.
ACS Appl Mater Interfaces ; 6(6): 4371-81, 2014 Mar 26.
Article in English | MEDLINE | ID: mdl-24588124

ABSTRACT

New covalently tethered CO2 adsorbents are synthesized through the in situ polymerization of N-carboxyanhydride (NCA) of l-alanine from amine-functionalized three-dimensional (3D) interconnected macroporous silica (MPS). The interconnected macropores provide low-resistant pathways for the diffusion of CO2 molecules, while the abundant mesopores ensure the high pore volume. The adsorbents exhibit high molecular weight (of up to 13058 Da), high amine loading (more than 10.98 mmol N g(-1)), fast CO2 capture kinetics (t1/2 < 1 min), high adsorption capacity (of up to 3.86 mmol CO2 g(-1) in simulated flue gas and 2.65 mmol CO2 g(-1) in simulated ambient air under 1 atm of dry CO2), as well as good stability over 120 adsorption-desorption cycles, which allows the overall CO2 capture process to be promising and sustainable.


Subject(s)
Air Pollutants/chemistry , Amines/chemistry , Carbon Dioxide/chemistry , Environmental Restoration and Remediation/instrumentation , Silicon Dioxide/chemistry , Adsorption , Alanine/chemistry , Environmental Restoration and Remediation/methods , Kinetics , Porosity
SELECTION OF CITATIONS
SEARCH DETAIL
...