Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Gene ; : 148763, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39002784

ABSTRACT

OBJECTIVE: This study aimed to analyze the impact of HGF on cardiomyocyte injury, apoptosis, and inflammatory response induced by lipopolysaccharide (LPS). METHODS: Enzyme-linked immunosorbent assay (ELISA) was utilized to quantify the levels of HGF, interleukin (IL)-6, IL-10, creatine phosphokinase-isoenzyme-MB (CK-MB), and cardiac troponin I (cTnI) in the samples. qPCR and Western blotting (WB) were employed to assess the mRNA and protein expressions of HGF, IL-10, IL-6, PI3K, AKT, p-PI3K, and p-AKT. RESULTS: The outcomes of the in vivo experiment revealed that serum levels of IL-6, IL-10, HGF and SOFA scores in the SC group were elevated in contrast to the non-SC group. The correlation analysis indicated a substantial and positive association among serum HGF, IL-6, and IL-10 levels and SOFA scores. Relative to IL-6, IL-10 levels, and SOFA scores, serum HGF demonstrated the highest diagnostic value for SC. Following LPS administration to stimulate H9c2 cells across various periods (0, 12, 24, 48, and 72 h), the levels of myocardial injury markers (CK-MB and cTnI) in the cell supernatants, intracellular inflammatory factors (mRNA and protein levels of IL-10 and IL-6), apoptosis and ROS levels, exhibited a gradual increase followed by a subsequent decline. Following the overexpression of HGF, there was an increase in cell viability, and a decrease in apoptosis, inflammation, oxidative stress injuries, and the protein phosphorylation expressions of PI3K and AKT.. After knockdown of HGF expression, the activity of LPS-induced H9c2 cells was further reduced, leading to increased cell injury, apoptosis, inflammation, oxidative stress,and the expression levels of PI3K and Akt protein phosphorylation were further elevated. CONCLUSION: HGF was associated with decreased LPS-induced H9c2 apoptosis and inflammation in H9c2 cells, alongside an improvement in cell viability, indicating potential cytoprotective effects. The mechanism underlying these impacts may be ascribed to the suppression of the PI3K/AKT signaling pathway.

2.
Front Microbiol ; 15: 1407324, 2024.
Article in English | MEDLINE | ID: mdl-38933024

ABSTRACT

Background: Some recent observational studies have shown that gut microbiota composition is associated with puerperal sepsis (PS) and no causal effect have been attributed to this. The aim of this study was to determine a causal association between gut microbiota and PS by using a two-sample Mendelian randomization (MR) analysis. Methods: This study performed MR analysis on the publicly accessible genome-wide association study (GWAS) summary level data in order to explore the causal effects between gut microbiota and PS. Gut microbiota GWAS (n = 18,340) were obtained from the MiBioGen study and GWAS-summary-level data for PS were obtained from the UK Biobank (PS, 3,940 cases; controls, 202,267 cases). Identification of single nucleotide polymorphisms associated with each feature were identified based on a significance threshold of p < 1.0 × 10-5. The inverse variance weighted (IVW) parameter was used as the primary method for MR and it was supplemented by other methods. Additionally, a set of sensitivity analytical methods, including the MR-Egger intercept, Mendelian randomized polymorphism residual and outlier, Cochran's Q and the leave-one-out tests were carried out to assess the robustness of our findings. Results: Our study found 3 species of gut microbiota, Lachnospiraceae FCS020, Lachnospiraceae NK4A136, and Ruminococcaceae NK4A214, to be associated with PS. The IVW method indicated an approximately 19% decreased risk of PS per standard deviation increase with Lachnospiraceae FCS020 (OR = 0.81; 95% CI 0.66-1.00, p = 0.047). A similar trend was also found with Lachnospiraceae NK4A136 (OR = 0.80; 95% CI 0.66-0.97, p = 0.024). However, Ruminococcaceae NK4A214 was positively associated with the risk of PS (OR = 1.33, 95% CI: 1.07-1.67, p = 0.011). Conclusion: This two-sample MR study firstly found suggestive evidence of beneficial and detrimental causal associations of gut microbiota on the risk of PS. This may provide valuable insights into the pathogenesis of microbiota-mediated PS and potential strategies for its prevention and treatment.

3.
Nat Prod Res ; 37(19): 3245-3252, 2023.
Article in English | MEDLINE | ID: mdl-35437081

ABSTRACT

Resina Draconis (RD), also known as 'dragon's blood', contains a broad range of natural compounds, such as flavonoids, stilbenes and dihydrochalcones. It is clinically used to enhance blood circulation. However, the major components of RD suffer from relatively poor water solubility. Glycosylation is a critical determinant for modulating solubility and improving bioavailability and bioactivity of natural products. Herein, we report a novel method to efficiently synthesize glycosidic derivatives of the major polyphenols in RD using a microbial glycosyltransferase, i.e., YjiC1. Solubility test showed that the synthetic glycosidic derivatives displayed higher water solubility than the raw materials. This research sheds light on the structural modification of natural products for higher water solubility, which is important for innovative drug discovery.

5.
Chem Biodivers ; 17(11): e2000529, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32939944

ABSTRACT

In this study, bufalin was glycosylated by an efficient chemo-enzymatic strategy. Firstly, 2-chloro-4-nitrophenyl-1-O-ß-D-glucoside (sugar donors) was obtained by chemical synthesis. Then, the glycosylation of the bufalin was achieved with the synthesized sugar donor under the catalysis of two glycosyltransferases (Loki and ASP). Finally, two glycosides, i. e., bufalin-3-O-ß-D-glucopyranoside and bufalin-3-O-[ß-D-glucopyranosyl-(1→2)-ß-D-glucopyranoside)], were obtained by preparative HPLC. Compared to our previously reported sole chemical (total yield 10 % in four steps) or enzymatic methods (30 %), our combined chemo-enzymatic strategy in this article greatly improves the yields of monoglycoside (68 %) and diglycoside (21 %) and decreased the experimental cost (90 %). Furthermore, we tested the water solubility of these glycosides and found that the water solubilities of the two glycosides were 13.1 and 53.7 times of bufalin, respectively. In addition, the inhibitory activity of these glycosides against Na+ , K+ -ATPase were evaluated. The mono-glycosylated compound showed more potent activity than bufalin, while the diglycosylated compound was less potent.


Subject(s)
Bufanolides/metabolism , Glycosides/metabolism , Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors , Bufanolides/chemistry , Glycosides/chemistry , Glycosylation , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Humans , Molecular Conformation , Recombinant Proteins/biosynthesis , Recombinant Proteins/isolation & purification , Sodium-Potassium-Exchanging ATPase/metabolism , Solubility , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...