Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(19): e2315168121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38683997

ABSTRACT

Accurate prediction of the efficacy of immunotherapy for cancer patients through the characterization of both genetic and phenotypic heterogeneity in individual patient cells holds great promise in informing targeted treatments, and ultimately in improving care pathways and clinical outcomes. Here, we describe the nanoplatform for interrogating living cell host-gene and (micro-)environment (NICHE) relationships, that integrates micro- and nanofluidics to enable highly efficient capture of circulating tumor cells (CTCs) from blood samples. The platform uses a unique nanopore-enhanced electrodelivery system that efficiently and rapidly integrates stable multichannel fluorescence probes into living CTCs for in situ quantification of target gene expression, while on-chip coculturing of CTCs with immune cells allows for the real-time correlative quantification of their phenotypic heterogeneities in response to immune checkpoint inhibitors (ICI). The NICHE microfluidic device provides a unique ability to perform both gene expression and phenotypic analysis on the same single cells in situ, allowing us to generate a predictive index for screening patients who could benefit from ICI. This index, which simultaneously integrates the heterogeneity of single cellular responses for both gene expression and phenotype, was validated by clinically tracing 80 non-small cell lung cancer patients, demonstrating significantly higher AUC (area under the curve) (0.906) than current clinical reference for immunotherapy prediction.


Subject(s)
Neoplastic Cells, Circulating , Humans , Neoplastic Cells, Circulating/pathology , Neoplastic Cells, Circulating/metabolism , Microfluidics/methods , Single-Cell Analysis/methods , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/blood , Phenotype , Cell Line, Tumor , Immunotherapy/methods , Gene Expression Profiling/methods , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/blood , Microfluidic Analytical Techniques/methods , Microfluidic Analytical Techniques/instrumentation
2.
Small Methods ; 8(3): e2300915, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37994267

ABSTRACT

In vitro, drug assessment holds tremendous potential to success in novel drug development and precision medicine. Traditional techniques for drug assessment, however, face remarkable challenges to achieve high speed, as limited by incubation-based drug delivery (>several hours) and cell viability measurements (>1 d), which significantly compromise the efficacy in clinical trials. In this work, a nano-electroporation-DNA tensioner platform is reported that shortens the time of drug delivery to less than 3 s, and that of cellular mechanical force analysis to 30 min. The platform adopts a nanochannel structure to localize a safe electric field for cell perforation, while enhancing delivery speed by 103 times for intracellular delivery, as compared to molecular diffusion in coculture methods. The platform is further equipped with a DNA tensioner to detect cellular mechanical force for quantifying cell viability after drug treatment. Systematic head-to-head comparison, by analyzing FDA (food and drug administration)-approved drugs (paclitaxel, doxorubicin), demonstrated the platform with high speed, efficiency, and safety, showing a simple yet powerful tool for clinical drug screening and development.


Subject(s)
Drug Delivery Systems , Electroporation , United States , Electroporation/methods , Electroporation Therapies , Diffusion , DNA
3.
Biosens Bioelectron ; 242: 115753, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37839351

ABSTRACT

Precise quantification of low-dose ionizing radiation is of great significance in protecting people from damage caused by clinical radiotherapy or environmental radiation. Traditional techniques for detecting radiation, however, remain extreme challenges to achieve high sensitivity and speed in quantifying radiation dosage. In this work, we report a Cas13a-Microdroplet platform that enables sensitive detection of ultra-low doses of radiation (0.5 Gy vs. 1 Gy traditional) within 1 h. The micro-platform adopts an ideal, specific radiation-sensitive marker, m6A on NCOA4 gene (NCOA4-m6A) that was first reported in our recent work. Microfluidics of the platform generate uniform microdroplets that encapsulate a CRISPR/Cas13a detection system and NCOA4-m6A target from the whole RNA extraction, achieving 10-fold enhancement in sensitivity and significantly reduced limit of detection (LOD). Systematic mouse models and clinical patient samples demonstrated its superior sensitivity and LOD (0.5 Gy) than traditional qPCR, which show wide potentials in radiation tracking and damage protection.


Subject(s)
Biosensing Techniques , Animals , Mice , Humans , Clustered Regularly Interspaced Short Palindromic Repeats , Disease Models, Animal , Limit of Detection , Radiation Dosage , Transcription Factors , Nuclear Receptor Coactivators
4.
Huan Jing Ke Xue ; 35(6): 2419-25, 2014 Jun.
Article in Chinese | MEDLINE | ID: mdl-25158525

ABSTRACT

In order to study the characteristics of carbon sources and sinks in the winter wheat farmland ecosystem in southwest hilly region of China, the LI6400-09 respiratory chamber was adopted in the experiment conducted in the experimental field in Southwest University in Chongqing. The soil respiration and plant growth dynamics were analyzed during the growth period of wheat in the triple intercropping system of wheat-maize-soybean. Four treatments including T (traditional tillage), R (ridge tillage), TS (traditional tillage + straw mulching), and RS (ridge tillage + straw mulching) were designed. Root biomass regression (RR) and root exclusion (RE) were used to compare the contribution of root respiration to total soil respiration. The results showed that the average soil respiration rate was 1.71 micromol x (m2 x s)(-1) with a variation of 0.62-2.91 micromol x (m2 x s)(-1). Significant differences in soil respiration rate were detected among different treatments. The average soil respiration rate of T, R, TS and RS were 1.29, 1.59, 1.99 and 1.96 micromol x (m2 x s)(-1), respectively. R treatment did not increase the soil respiration rate significantly until the jointing stage. Straw mulching treatment significantly increased soil respiration, with a steadily high rate during the whole growth period. During the 169 days of growth, the total soil respiration was 2 266.82, 2799.52, 3 483.73 and 3 443.89 kg x hm(-2) while the cumulative aboveground biomasses were 51 800.84, 59 563.20, 66 015.37 and 7 1331.63 kg x hm(-2). Compared with the control, the yield of R, TS and RS increased by 14.99%, 27.44% and 37.70%, respectively. The contribution of root respiration to total soil respiration was 47.05% by RBR, while it was 53.97% by RE. In the early growth period, the carbon source was weak. The capacity of carbon sink started to increase at the jointing stage and reached the maximum during the filling stage. The carbon budget of wheat field was 5 924.512, 6743.807, 8350.741, 8 876.115 kg x hm(-2), respectively. The results indicated that ridge tillage and straw mulching conservation tillage significantly improved the carbon sink in the wheat farmland ecosystem.


Subject(s)
Agriculture/methods , Carbon Sequestration , Soil/chemistry , Triticum , Biomass , Carbon/chemistry , China , Ecosystem , Glycine max , Zea mays
SELECTION OF CITATIONS
SEARCH DETAIL
...