Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; : 131889, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38782624

ABSTRACT

This work aimed at building functional emulsions based on the linear dextrins (LDs) emulsion system. The gradient polyethylene glycol (PEG) precipitaion method was used to fractionate LDs into fractions with different degrees of polymerization (DP). A package, and co-precipitation procedure of LDs, and eicosapentaenoic acid (EPA) was used to fabricate LDs-EPA composites. The gas chromatograph, Fourier transform infrared spectroscopy, X-ray diffraction and differential scanning calorimetry analyses affirmed the formation of the LDs-EPA composites. The sizes of these composites were 38.55 nm, 59.14 nm to 80.62 nm, respectively, and they had good amphiphilicity. Compared with LDs, these LDs-EPA composites stabilized Pickering emulsion had higher stability and antioxidant capacity. Their emulsifying ability was positively correlated with the DP values of LDs. Furthermore, the oxidation stability results showed that LDsF10-EPA emulsion had the lowest lipid hydroperoxide (LHs) content, malondioxide (MDA) content and hexal concentration, which were 138.75 mmol kg-1 oil, 15.50 mmol kg-1 oil and 3.83 µmol kg-1 oil, respectively. The study provided a new idea and application values for the application of LDs in emulsion.

2.
Food Chem X ; 22: 101442, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38746782

ABSTRACT

This study investigated the impact of different temperatures and durations on the structural and emulsifying properties of copra meal protein. Additionally, the stability of copra meal protein Pickering emulsions was assessed through rheological and interfacial characteristics. Findings revealed a positive correlation between emulsification properties and heating temperature and duration. Thermal aggregates, facilitated by hydrogen bonds, hydrophobic interactions, and disulfide bonds, significantly enhanced surface hydrophobicity. Heat-treated copra meal protein-based Pickering emulsions demonstrate enhanced adsorption at the oil-water interface and resistance to diffusion. The three-phase contact angle increases from 57.7° to 79.8° following heating at 95 °C for 30 min. The addition of NaCl and heating treatment did not affect emulsion particle size or interface adsorption ability. But it improved the rheological properties to varying degrees. These results offer valuable insights for optimizing the physicochemical and functional attributes of copra meal protein in the food industry.

3.
Food Chem X ; 22: 101363, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38681229

ABSTRACT

In this study, ω-3 medium- and long-chain triacylglycerols (MLCTs) microcapsules with excellent performance were obtained using soy protein as the wall component to address the oxidation-related problems of MLCTs. Additionally, the effect of soy, whey, or pea proteins on microcapsules in terms of the changes in their structure and physicochemical properties was investigated. The results showed that the small particle size, low PDI (polydispersity index) and zeta potential, fast adsorption rate, and low interfacial tension of these protein-based samples fabricated through the O/W template method were conducive to maintaining the integrity of microcapsules during spray-drying. The microcapsules, characterized by a spherical shape, exhibited superior encapsulation efficiency of 94.56%, surpassing the findings of previous investigations. Overall, these microcapsules exhibited long-term storage stability and low controllable release rates, which could be utilized as carriers for liposoluble actives.

4.
Food Chem ; 444: 138601, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38325083

ABSTRACT

Recently, MLCTs have attracted considerable attention as a potential alternative to traditional oils due to their suppressive effect on fat accumulation and insulin sensitivity. In this study, the microcapsules of MLCTs with superior performance were fabricated through different homogenization processes to overcome the limitations of ω-3 medium- and long- chain triacylglycerols (MLCTs), including poor stability and prone oxidation. Additionally, the impact of various homogenization techniques, namely, high-pressure, ultrasound, and cavitation jet, on the particle structure, encapsulation efficiency, and oxidation stability of microcapsules (MLCTs) was investigated. The MLCTs microcapsules fabricated through high-pressure homogenization had a smaller particle size of 295.12 nm, lower PDI of 0.24, and a higher zeta-potential absolute value of 32.65, which significantly improved their dispersion and encapsulation efficiency, reaching 94.56 % after the spray-drying process. Furthermore, the low moisture content and superior storage stability of MLCTs microcapsules have the potential to serve as carriers of liposoluble actives.


Subject(s)
Fatty Acids, Omega-3 , Soybean Proteins , Capsules/chemistry , Fatty Acids, Omega-3/chemistry , Oxidation-Reduction , Triglycerides
5.
J Agric Food Chem ; 72(7): 3707-3718, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38268446

ABSTRACT

Protein particle-stabilized emulsions often lack thermal stability, impacting their industrial use. This study investigated the effects of genipin (GP)-zein cross-linked particles with varying GP-to-protein weight ratios (0/0.02/0.1:1) on emulsion thermal stability. Enhanced stability was observed at the GP level of 0.1. Heat treatment increased the covalent cross-linking in raw particles and emulsions. Isolated particles from heated emulsions grew in size (micrometer scale) with higher GP levels, unlike heated raw particles (nanoscale). GP-protein cross-linking reduced the droplet-droplet and particle-emulsifier interactions in the heated emulsion. Spectroscopic analysis and electrophoresis revealed that GP-zein cross-linking increased protein structural stability and inhibited nondisulfide and non-GP cross-linking reactions in heated emulsions. The GP-zein bridges between particles at the oil-water interface create strong connections in the particle layer (shell), referred to as "particle-shell locking", enhancing the thermal stability of emulsion significantly. This insight aids the future design of protein-particle-based emulsions, preserving properties like aeratability during thermal processing.


Subject(s)
Iridoids , Zein , Emulsions/chemistry , Zein/chemistry , Particle Size , Emulsifying Agents/chemistry
6.
Int J Biol Macromol ; 256(Pt 1): 128381, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38000596

ABSTRACT

The interactions between carboxymethyl cellulose sodium and proteins can regulate the interfacial and rheological properties of HIPEs, which plays a leading role in the stabilities of HIPEs. This article prepared various ratios of soluble soy protein isolate/carboxymethyl cellulose sodium (SPI/CMC) complexes in different proportions and examined the impact of various ratios of complexes on the structure and interface properties of complexes systems. Additionally, it explored the co-emulsification mechanism of HIPEs using SPI and CMC. At appropriate ratios of SPI/CMC, SPI and CMC mainly combine through non covalent binding and form complexes with smaller particle sizes and stronger electrostatic repulsion. The interfacial properties indicated that adding appropriate CMC increased the pliability and reduced the interfacial tension, while also enhancing the wettability of SPI/CMC complexes. At the ratio of 2:1, the SPI/CMC complexes-stabilized HIPPEs exhibited smaller oil droplets size, tighter droplet packing, and thicker interfacial film through the bridging of droplets and the generation of stronger gel-like network structures to prevent the coalescence/flocculation of droplets. These results suggested that the appropriate ratios of SPI/CMC can improve the physical stability of HIPEs by changing the structure and interface characteristics of the SPI/CMC complexes. This work provided theoretical support for stable HIPEs formed with protein-polysaccharide complexes.


Subject(s)
Carboxymethylcellulose Sodium , Soybean Proteins , Soybean Proteins/chemistry , Emulsions/chemistry , Wettability , Particle Size , Sodium
7.
Food Chem X ; 20: 100954, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38144812

ABSTRACT

Coconut milk is an unstable emulsion system, mainly stabilized by proteins, which limits the development of the food industry. The aim of this study was to investigate mechanisms for increasing emulsion stability through the interaction between coffee polyphenols (CPs) and coconut globulin (CG), the main protein in coconut milk. Caffeic acid (CA), chlorogenic acid (CHA), and ferulic acid (FA) were selected as CP models. The results showed that hydrogen bond interactions mainly occurred between CG and CPs (CG-FA < CG-CA < CG-CHA). CHA containing quinic acid preferentially formed a strong interaction with CG. The interaction changed the lipophilicity of CG and facilitated the formation of a dense and thick interfacial film at the oil-water interface. Furthermore, the emulsion stabilized by CG-CPs showed excellent stability after storage, centrifugation, pH, and salt treatment, especially CG-CHA. This study could provide a theoretical basis for improving the stability of coconut milk products.

8.
Foods ; 12(11)2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37297479

ABSTRACT

This study investigates the treatment of coconut oil using thermosonic treatment in combination with green coffee beans. Under a defined ratio of coconut oil to green coffee beans, the effect of different thermosonic time on the quality parameters, active substance content, antioxidant capacity, and thermal oxidative stability of coconut oil were investigated as a strategy to potentially improve the quality of oil. Results showed that the ß-sitosterol content of CCO (coconut coffee oil) treated with the thermal method combined with green coffee bean treatment reached up to 393.80 ± 11.13 mg/kg without affecting the lipid structure. In addition, DPPH clearance equivalents increased from 5.31 ± 1.30 mg EGCG/g to 71.34 ± 0.98 mg EGCG/g, and the ABTS clearance equivalent was 45.38 ± 0.87 mg EGCG/g versus 0 for the untreated sample. The improvement in thermal oxidation stability of treated coconut oil is also significant. The TG (Thermogravimetry) onset temperature was elevated from 277.97 °C to 335.08 °C and the induction time was elevated up to 24.73 ± 0.41 h from 5.17 ± 0.21 h. Thermosonic treatment in combination with green coffee beans is an ideal option to improve the quality of coconut oil. The results of this article provide new ideas for the development of plant-blended oil products and the new utilization of coconut oil and coffee beans.

9.
Food Chem ; 343: 128407, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33129620

ABSTRACT

In this study, cocoa butter equivalents (CBEs) were prepared through enzymatic interesterification of palm mid-fraction (PMF) with stearic acid (SA). The reaction process parameters were experimented and the performance of the product was analysed. PMF and stearic acid (at a mass ratio of 1:2) were catalysed by 80 g kg-1 enzyme loading of Lipozyme RM IM fromRhizomucor mieheiat 60 °C for 120 min. The yield of the CBE product was more than 92%, and the CBE resembled cocoa butter (CB) in terms of its triacylglycerol composition. The hardness of the CBE product was higher than that of CB at different storage temperatures, but this difference was not obvious at 25 °C. The polymorphic structures and SFC curve of the CBE were similar to those of the CB. In addition, the CBE could be mixed with CB in any ratio without an obvious eutectic phenomena. Up to 40% CBE could be added to CB without significantly affecting the thermodynamic properties of CB. Thus, replacing CB with the CBE product is feasible.


Subject(s)
Dietary Fats , Lipase/chemistry , Palm Oil/chemistry , Rhizomucor/enzymology , Stearic Acids/chemistry , Catalysis , Crystallization , Esterification , Feasibility Studies , Lipase/metabolism , Thermodynamics , Triglycerides/chemistry
10.
J Sci Food Agric ; 100(12): 4565-4574, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32419135

ABSTRACT

BACKGROUND: Medium- and long- chain triacylglycerols (MLCTs) are functional structural lipids that can provide the human body with essential fatty acids and a faster energy supply. This study aimed to prepare MLCTs rich in α-linolenic by enzymatic interesterification of perilla oil and medium-chain triacylglycerols (MCTs), catalyzed by Lipozyme RM IM, Lipozyme TL IM, Lipozyme 435, and Novozyme 435 respectively. RESULTS: The effects of lipase loading, concentration of MCTs, reaction temperature, and reaction time on the yield of MLCTs were investigated. It was found that the reaction achieved more than a 70% yield of MLCTs in triacylglycerols under the conditions of 400 g kg-1 MCTs and 60 g kg-1 lipase loading after equilibrium. A novel two-stage deodorization was also applied to purify the interesterification products. The triacylglycerols reach over 97% purity in the products with significant removal (P < 0.05) of the free fatty acids, and the trans fatty acids were strictly controlled at below 1%. There was more than 40% α-linolenic in the purified products, with long-chain fatty acids mostly occupying the desired sn-2 position in acylglycerols, which are more active in hydrolysis. CONCLUSION: A series of novel α-linolenic acid-rich medium- and long-chain triacylglycerols was prepared. Under appropriate reaction conditions, the yield of MLCTs in triacylglycerols was above 70%. A novel two-stage deodorization can be used to promote the elimination of free fatty acids and limit the generation of trans fatty acids. © 2020 Society of Chemical Industry.


Subject(s)
Lipase/chemistry , Triglycerides/chemistry , alpha-Linolenic Acid/chemistry , Biocatalysis , Enzymes, Immobilized , Fatty Acids/chemistry , Fungal Proteins , Plant Oils/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...