Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Med Robot Bionics ; 6(2): 577-588, 2024 May.
Article in English | MEDLINE | ID: mdl-38911181

ABSTRACT

Stereotactic neurosurgery is a well-established surgical technique for navigation and guidance during treatment of intracranial pathologies. Intracerebral hemorrhage (ICH) is an example of various neurosurgical conditions that can benefit from stereotactic neurosurgery. As a part of our ongoing work toward real-time MR-guided ICH evacuation, we aim to address an unmet clinical need for a skull-mounted frameless stereotactic aiming device that can be used with minimally invasive robotic systems for MR-guided interventions. In this paper, we present NICE-Aiming, a Neurosurgical, Interventional, Configurable device for Effective-Aiming in MR-guided robotic neurosurgical interventions. A kinematic model was developed and the system was used with a concentric tube robot (CTR) for ICH evacuation in (i) a skull phantom and (ii) in the first ever reported ex vivo CTR ICH evacuation using an ex vivo ovine head. The NICE-Aiming prototype provided a tip accuracy of 1.41±0.35 mm in free-space. In the MR-guided gel phantom experiment, the targeting accuracy was 2.07±0.42 mm and the residual hematoma volume was 12.87 mL (24.32% of the original volume). In the MR-guided ex vivo ovine head experiment, the targeting accuracy was 2.48±0.48 mm and the residual hematoma volume was 1.42 mL (25.08% of the original volume).

2.
Ann Biomed Eng ; 52(8): 2065-2075, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38634953

ABSTRACT

MR-guided microwave ablation (MWA) has proven effective in treating hepatocellular carcinoma (HCC) with small-sized tumors, but the state-of-the-art technique suffers from sub-optimal workflow due to the limited accuracy provided by the manual needle insertions. This paper presents a compact body-mounted MR-conditional robot that can operate in closed-bore MR scanners for accurate needle guidance. The robotic platform consists of two stacked Cartesian XY stages, each with two degrees of freedom, that facilitate needle insertion pose control. The robot is actuated using 3D-printed pneumatic turbines with MR-conditional bevel gear transmission systems. Pneumatic valves and control mechatronics are located inside the MRI control room and are connected to the robot with pneumatic transmission lines and optical fibers. Free-space experiments indicated robot-assisted needle insertion error of 2.6 ± 1.3 mm at an insertion depth of 80 mm. The MR-guided phantom studies were conducted to verify the MR-conditionality and targeting performance of the robot. Future work will focus on the system optimization and validations in animal trials.


Subject(s)
Magnetic Resonance Imaging , Robotic Surgical Procedures , Robotic Surgical Procedures/instrumentation , Robotic Surgical Procedures/methods , Humans , Liver Neoplasms/surgery , Liver Neoplasms/diagnostic imaging , Phantoms, Imaging , Liver/surgery , Liver/diagnostic imaging , Minimally Invasive Surgical Procedures/instrumentation , Robotics/instrumentation , Carcinoma, Hepatocellular/surgery , Carcinoma, Hepatocellular/diagnostic imaging , Equipment Design
3.
J Mech Robot ; 16(8)2024 Aug.
Article in English | MEDLINE | ID: mdl-38434486

ABSTRACT

Purpose: The purpose of this paper is to investigate the geometrical design and path planning of Concentric tube robots (CTR) for intracerebral hemorrhage (ICH) evacuation, with a focus on minimizing the risk of damaging white matter tracts and cerebral arteries. Methods: To achieve our objective, we propose a parametrization method describing a general class of CTR geometric designs. We present mathematical models that describe the CTR design constraints and provide the calculation of a path risk value. We then use a genetic algorithm to determine the optimal tube geometry for targeting within the brain. Results: Our results show that a multi-tube CTR design can significantly reduce the risk of damaging critical brain structures compared to the conventional straight tube design. However, there is no significant relationship between the path risk value and the number and shape of the additional inner curved tubes. Conclusion: Considering the challenges of CTR hardware design, fabrication, and control, we conclude that the most practical geometry for a CTR path in ICH treatment is a straight outer tube followed by a planar curved inner tube. These findings have important implications for the development of safe and effective CTRs for ICH evacuation by enabling dexterous manipulation to minimize damage to critical brain structures.

SELECTION OF CITATIONS
SEARCH DETAIL
...