Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.036
Filter
1.
Oncol Lett ; 28(1): 306, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38774456

ABSTRACT

Long non-coding (lnc)RNAs serve a pivotal role as regulatory factors in carcinogenesis. The present study aimed to assess the involvement of the lncRNA progression and angiogenesis-associated RNA in hepatocellular carcinoma (PAARH) in liver cancer, along with the associated underlying mechanism. Through the use of reverse transcription-quantitative (RT-q)PCR, differences in the expression levels of PAARH in HepG2, HEP3B2.1.7, HCCLM3, Huh-7 and MHCC97-H liver cancer cell lines and THLE-2 epithelial cell lines were evaluated. The liver cancer cell line with the greatest, significantly different, level of expression relative to the normal liver cell line was selected for subsequent experiments. Using ENCORI database, the putative target genes of the microRNA (miR) miR-6512-3p were predicted. Cells were then transfected with lentiviruses carrying short-hairpin-PAARH to interfere with PAARH expression. Subsequently, HepG2 liver cancer cells were transfected with a miR-6512-3p mimic and an inhibitor, and the expression levels of miR-6512-3p and the LIM and SH3 domain protein 1 (LASP1) in cells were assessed using RT-qPCR analysis. Cell proliferation was subsequently evaluated using colony formation assays, and immunofluorescence and western blotting were used to assess the expression level of LASP1 in transfected cells. The binding interaction between miR-6512-3p and LASP1 was further evaluated using a dual-luciferase reporter gene assay. Liver cancer cells were found to exhibit higher expression levels of PAARH compared with normal liver cells. Following PAARH interference, the expression level of miR-6512-3p was significantly increased, whereas that of LASP1 was significantly decreased, resulting in a reduction in cell proliferation. In liver cancer cells, miR-6512-3p overexpression led to a significant reduction in the LASP1 level and reduced proliferation, whereas suppressing miR-6512-3p led to a significant increase in LASP1 levels and increased proliferation. Additionally, the inhibition of miR-6512-3p caused the states of low LASP1 expression and reduced cell proliferation to be reversed. LASP1, a recently identified target gene of miR-6512-3p, was demonstrated to be suppressed by miR-6512-3p overexpression, thereby inhibiting liver cancer cell proliferation. Taken together, the findings of the present study demonstrate that the lncRNA PAARH may enhance liver cancer cell proliferation by engaging miR-6512-3p to target LASP1.

2.
Bioresour Bioprocess ; 11(1): 50, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753083

ABSTRACT

Biosynthesis of paclitaxel (Taxol™) is a hot topic with extensive and durable interests for decades. However, it is severely hindered due to the very low titers of intermediates. In this study, Escherichia coli was employed to de novo synthesize a key intermediate of paclitaxel, taxadien-5α-yl-acetate (T5OAc). Plasmid-based pathway reconstruction and optimization were conducted for T5OAc production. The endogenous methylerythritol phosphate pathway was enhanced to increase the precursor supply. Three taxadien-5α-ol O-acetyltransferases were tested to obtain the best enzyme for the acetylation step. Metabolic burden was relieved to restore cell growth and promote production through optimizing the plasmid production system. In order to achieve metabolic balance, the biosynthesis pathway was regulated precisely by multivariate-modular metabolic engineering. Finally, in a 5-L bioreactor, the T5OAc titer was enhanced to reach 10.9 mg/L. This represents an approximately 272-fold increase in production compared to the original strain, marking the highest yield of T5OAc ever documented in E. coli, which is believed to be helpful for promoting the progress of paclitaxel biosynthesis.

3.
Discov Oncol ; 15(1): 168, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750182

ABSTRACT

BACKGROUND: Studies evaluating the effectiveness of immune checkpoint inhibitors (ICI) for endometrial cancer (EC) are limited. This study aimed to assess the efficacy of PD-1/PD-L1 inhibitors as monotherapy for EC by conducting a meta-analysis. The predictive significance of MMR status, a biomarker for ICI response, also required further investigation. METHODS: A systematic literature search was conducted in English databases until September 2023. The analysis included objective response rate (ORR), disease control rate (DCR), adverse events (AEs), and odds ratios (OR), along with their corresponding 95% confidence intervals (CI). RESULTS: There were twelve trials totaling 685 individuals. PD-1/PD-L1 inhibitor monotherapy resulted in an ORR for 34% (95% CI = 24-44%) of the pooled EC patients. Subgroup analysis revealed a significantly higher ORR in dMMR EC (45%) compared to pMMR EC (8%), with an OR of 6.36 (95% CI = 3.64-11.13). The overall DCR was 42%, with dMMR EC at 51% and pMMR EC at 30% (OR = 2.61, 95% CI = 1.69-4.05). Grade three or higher adverse events (AEs) occurred in 15% of cases (95% CI = 9-24%) of the pooled incidence of AEs, which was 68% (95% CI = 65-72%). CONCLUSIONS: This meta-analysis provides significant evidence for the effectiveness of PD-1/PD-L1 inhibitors as monotherapy for EC. Notably, dMMR EC patients demonstrated superior treatment efficacy with PD-1/PD-L1 inhibitor immunotherapy. Further research is required to explore subclassifications of EC based on dMMR molecular subtypes, enabling improved treatment strategies and outcomes for EC patients.

4.
J Am Chem Soc ; 146(19): 13536-13545, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38693624

ABSTRACT

Herein, we establish a remote hydrosulfonamidation (HSA) of alkenes using palladium catalysis, where N-fluoro-N-(fluoro-sulfonyl)-carbamate with a sulfur(VI) fluoride moiety is demonstrated as a good amidation reagent. The anti-Markovnikov HSA reaction of terminal alkenes and the remote HSA of internal alkenes are achieved to efficiently yield primary N-alkyl-N-(fluorosulfonyl)-carbamates. In addition, this protocol enables the high-value utilization of alkane by combining the dehydrogenation process. The generated N-alkyl products exhibit a unique reactivity of sulfur(VI) fluorides, which can be directly transferred to N-alkyl sulfamides or amines via the sulfur(VI) fluoride exchange reaction, thereby streamlining their synthesis. Moreover, a (pyridyl) benzazole-type ligand proved to be vital for the excellent chemo- and regioselectivities.

5.
J Am Chem Soc ; 146(19): 13163-13175, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38698548

ABSTRACT

A pretargeted strategy that decouples targeting vectors from radionuclides has shown promise for nuclear imaging and/or therapy in vivo. However, the current pretargeted approach relies on the use of antibodies or nanoparticles as the targeting vectors, which may be compromised by poor tissue penetration and limited accumulation of targeting vectors in the tumor tissues. Herein, we present an orthogonal dual-pretargeted approach by combining stimuli-triggered in situ self-assembly strategy with fast inverse electron demand Diels-Alder (IEDDA) reaction and strong biotin-streptavidin (SA) interaction for near-infrared fluorescence (NIR FL) and magnetic resonance (MR) imaging of tumors. This approach uses a small-molecule probe (P-Cy-TCO&Bio) containing both biotin and trans-cyclooctene (TCO) as a tumor-targeting vector. P-Cy-TCO&Bio can efficiently penetrate subcutaneous HeLa tumors through biotin-assisted targeted delivery and undergo in situ self-assembly to form biotinylated TCO-bearing nanoparticles (Cy-TCO&Bio NPs) on tumor cell membranes. Cy-TCO&Bio NPs exhibited an "off-on" NIR FL and retained in the tumors, offering a high density of TCO and biotin groups for the concurrent capture of Gd-chelate-labeled tetrazine (Tz-Gd) and IR780-labeled SA (SA-780) via the orthogonal IEDDA reaction and SA-biotin interaction. Moreover, Cy-TCO&Bio NPs offered multiple-valent binding modes toward SA, which additionally regulated the cross-linking of Cy-Gd&Bio NPs into microparticles (Cy-Gd&Bio/SA MPs). This process could significantly (1) increase r1 relaxivity and (2) enhance the accumulation of Tz-Gd and SA-780 in the tumors, resulting in strong NIR FL, bright MR contrast, and an extended time window for the clear and precise imaging of HeLa tumors.


Subject(s)
Biotin , Cyclooctanes , Magnetic Resonance Imaging , Nanoparticles , Cyclooctanes/chemistry , Humans , Nanoparticles/chemistry , Magnetic Resonance Imaging/methods , HeLa Cells , Biotin/chemistry , Animals , Optical Imaging , Biotinylation , Mice , Streptavidin/chemistry , Cycloaddition Reaction , Fluorescence
6.
J Phys Chem Lett ; 15(20): 5436-5444, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38743952

ABSTRACT

The excellent reactivity of frustrated Lewis pairs (FLP) to activate small molecules has gained increasing attention in recent decades. Though the development of surface FLP (SFLP) is prompting the application of FLP in the chemical industry, the design of SFLP with superior activity, high density, and excellent stability for small-molecule activation is still challenging. Herein, we review the progress of designing SFLP by surface engineering, screening natural SFLP, and the dynamic formation of SFLP from theoretical perspectives. We highlight the breakthrough in fine-tuning the activity, density, and stability of the designed SFLP studied by using computational methods. We also discuss future challenges and directions in designing SFLP with outstanding capabilities for small-molecule activation.

7.
Front Psychiatry ; 15: 1391653, 2024.
Article in English | MEDLINE | ID: mdl-38699445

ABSTRACT

Background: Childhood trauma exerts enduring impacts on the physical and psychological well-being of individuals in adulthood, influencing their daily functioning. This study aims to investigate the impact of childhood trauma on stress recovery in adults, concentrating on heart rate variations during acute stress exposure. Methods: A cohort of 126 participants completed the Childhood Trauma Questionnaire (CTQ) and underwent the Trier Social Stress Test (TSST) to elicit acute stress, with continuous heart rate (HR) monitoring for stress recovery assessment. Results: The results revealed a negative correlation between childhood trauma and stress recovery, prominently observed in instances of emotional neglect and abuse. Individuals with heightened childhood trauma exhibited protracted stress recovery following acute stress exposure. Conclusion: Childhood traumatic experiences were associated with the recovery from acute stress, as indicated by heart rate indices. These findings contribute to the foundational framework for psychological interventions tailored to individuals with a history of childhood trauma.

8.
Pharmaceutics ; 16(5)2024 May 20.
Article in English | MEDLINE | ID: mdl-38794347

ABSTRACT

The loop electrosurgical excision procedure (LEEP) is a common treatment for cervical intraepithelial neoplasia (CIN). Photodynamic therapy (PDT) mediated by 5-aminolevulinic acid (ALA) is a non-invasive modality that has been used for treating precancerous diseases and HPV infections. This comparative study evaluated the efficacy and safety of ALA PDT and the LEEP in the treatment of cervical high-grade squamous intraepithelial lesions (HSILs). Patient records were reviewed and HSIL patients with HPV infections (24-51 years old) who underwent PDT or LEEP treatment were selected. Efficacy was analyzed blindly based on HPV-DNA, cytology, and colposcopy-directed biopsy obtained at 6 months after treatment. Treatment-related discomfort and side effects were also analyzed. Cure rates of 88.1% and 70.0% were achieved for the PDT group and LEEP group (p < 0.05), respectively. HPV-negative conversion rates of 81.0% and 62.0% were achieved for the PDT group and LEEP group (p < 0.05), respectively. The overall lesion remission rate of the PDT group was 19% higher than that of the LEEP group. The incidence of side effects was much lower in the PDT group. These results show that ALA PDT is a feasible non-invasive treatment for cervical HSIL.

9.
Angew Chem Int Ed Engl ; 63(23): e202405405, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38578834

ABSTRACT

The surface frustrated Lewis pairs (SFLPs) open up new opportunities for substituting noble metals in the activation and conversion of stable molecules. However, the applications of SFLPs on a larger scale are impeded by the complex construction process, low surface density, and sensitivity to the reaction environment. Herein, wurtzite-structured crystals such as GaN, ZnO, and AlP are found for developing natural, dense, and stable SFLPs. It is revealed that the SFLPs can naturally exist on the (100) and (110) surfaces of wurtzite-structured crystals. All the surface cations and anions serve as the Lewis acid and Lewis base in SFLPs, respectively, contributing to the surface density of SFLPs as high as 7.26×1014 cm-2. Ab initio molecular dynamics simulations indicate that the SFLPs can keep stable under high temperatures and the reaction atmospheres of CO and H2O. Moreover, outstanding performance for activating the given small molecules is achieved on these natural SFLPs, which originates from the optimal orbital overlap between SFLPs and small molecules. Overall, these findings not only provide a simple method to obtain dense and stable SFLPs but also unfold the nature of SFLPs toward the facile activation of small molecules.

10.
Comput Biol Med ; 174: 108374, 2024 May.
Article in English | MEDLINE | ID: mdl-38582003

ABSTRACT

Semi-supervised medical image segmentation strives to polish deep models with a small amount of labeled data and a large amount of unlabeled data. The efficiency of most semi-supervised medical image segmentation methods based on voxel-level consistency learning is affected by low-confidence voxels. In addition, voxel-level consistency learning fails to consider the spatial correlation between neighboring voxels. To encourage reliable voxel-level consistent learning, we propose a dual-teacher affine consistent uncertainty estimation method to filter out some voxels with high uncertainty. Moreover, we design the spatially dependent mutual information module, which enhances the spatial dependence between neighboring voxels by maximizing the mutual information between the local voxel blocks predicted from the dual-teacher models and the student model, enabling consistent learning at the block level. On two benchmark medical image segmentation datasets, including the Left Atrial Segmentation Challenge dataset and the BraTS-2019 dataset, our method achieves state-of-the-art performance in both quantitative and qualitative aspects.


Subject(s)
Image Processing, Computer-Assisted , Humans , Image Processing, Computer-Assisted/methods , Neural Networks, Computer , Algorithms , Databases, Factual
11.
Angew Chem Int Ed Engl ; : e202404244, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38639067

ABSTRACT

Ratiometric afterglow luminescent (AGL) probes are attractive for in vivo imaging due to their high sensitivity and signal self-calibration function. However, there are currently few ratiometric AGL probes available for imaging enzymatic activity in living organisms. Here, we present an energy diversion (ED) strategy that enables the design of an enzyme-activated ratiometric AGL probe (RAG-RGD) for in vivo afterglow imaging. The ED process provides RAG-RGD with a radiative transition for an 'always on' 520-nm AGL signal (AGL520) and a cascade three-step energy transfer (ET) process for an 'off-on' 710-nm AGL signal (AGL710) in response to a specific enzyme. Using matrix metalloproteinase-2 (MMP-2) as an example, RAG-RGD shows a significant ~11-fold increase in AGL710/AGL520 toward MMP-2. This can sensitively detect U87MG brain tumors through ratiometric afterglow imaging of MMP-2 activity, with a high signal-to-background ratio and deep imaging depth. Furthermore, by utilizing the self-calibration effect of ratiometric imaging, RAG-RGD demonstrated a strong negative correlation between the AGL710/AGL520 value and the size of orthotopic U87MG tumor, enabling accurate monitoring of orthotopic glioma growth in vivo. This ED process may be applied for the design of other enzyme-activated ratiometric afterglow probes for sensitive afterglow imaging.

12.
Chemosphere ; 358: 142109, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657692

ABSTRACT

Recycling polluted water via different techniques has become one of the most feasible ways to solve the freshwater crisis. We describe a novel method to prepare reusable and efficient photothermal energy conversion materials for water purification. Using crosslinked xerogels as precursor, the porous and interconnected carboxymethylcellulose sodium-derived carbon aerogels (abbreviated as CCAs) with good hydrophilic performance and strong light absorption capability are firstly fabricated through pyrolysis. Photothermal measurement results show that CCA15 exhibit excellent solar steam generation rate of 2.31 kg m-2 h-1 with high light-to-vapor conversion efficiency of 95.9% under 1 sun illumination. In addition, the feasible application of CCA15 for efficient water purification under 1 sun irradiation using a homemade water treatment device has been demonstrated successfully. The as-prepared CCAs shown in here can be a continuable solution to mitigate the global freshwater crisis.


Subject(s)
Carbon , Carboxymethylcellulose Sodium , Gels , Water Purification , Carboxymethylcellulose Sodium/chemistry , Water Purification/methods , Gels/chemistry , Carbon/chemistry , Sunlight , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Porosity
13.
Am J Case Rep ; 25: e943214, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38664945

ABSTRACT

BACKGROUND Castleman's disease (CD) is a reactive lymph node hyperplasia initially identified by Castleman in 1956. CD predominantly affects individuals 20-50 years of age, with low incidence in children. This case report describes 3 cases of CD treated in our hospital and reviews the relevant literature. The purpose of this case report was to enhance clinical understanding and treatment of CD in the head and neck in children. CASE REPORT To enhance clinical understanding and improve treatment of CD in the head and neck region in children, we present the cases of 3 patients who were admitted to the hospital, primarily presenting with a neck mass. Preoperatively, the patients collectively exhibited non-specific findings. Surgical interventions were performed with Cases 1 and 3 undergoing left functional (radical) neck lymph node dissection, in contrast to Case 2, in which bilateral functional (radical) neck lymph node dissection was executed. Pathological examination confirmed the diagnosis of CD in each of the 3 patients. Following surgery, a follow-up period ranging from 3 months to 1 year revealed that all patients had successfully recovered, with no recurrence. CONCLUSIONS Castleman disease is a rare disease in children and difficult clinical diagnosis. Some patients with unicentric Castleman disease (UCD) can be treated with surgery, and those with multicentric Castleman disease (MCD) need chemotherapy, but at present there is no widely accepted treatment plan.


Subject(s)
Castleman Disease , Neck , Child , Female , Humans , Male , Castleman Disease/surgery , Castleman Disease/diagnosis , Neck Dissection , Child, Preschool
14.
Photodiagnosis Photodyn Ther ; 46: 104068, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38598961

ABSTRACT

Port-wine stain (PWS) birthmarks are congenital capillary malformations occurring in 0.3 %∼0.5 % of newborns. Hemoporfin-mediated vascular-acting photodynamic therapy (Hemoporfin PDT) is an emerging option for treating PWS. This in vivo study aimed to compare laser and light-emitting diodes (LED) as light source for Hemoporfin PDT. Chicken wattles were used as the animal model. Color and histopathological changes were evaluated after combining Hemoporfin with KTP laser or LED light source of 532 nm at the same doses. Both PDT approaches could induce significant vascular injury and color bleaching. Although the use of the laser resulted in a greater vascular clearance, the LED showed more uniform distribution both in the beam profiles and tissue reaction and exhibited better safety. This in vivo study suggests that the LED is a favorable choice for larger PWS lesion.

15.
Heliyon ; 10(6): e28262, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38560695

ABSTRACT

Objective: The aim of this study was to evaluate the prognostic value of coronary artery disease (CAD) detected by coronary computed tomography angiography (CTA) to predict the risk of all-cause mortality in cancer patients in a propensity score matching (PSM) analysis. Methods: A total of 331 patients who previously had cancer and underwent coronary CTA from January 2015 to December 2019 were included. Multivariate Cox proportional hazards regression analysis and propensity-score matching analysis were performed. The primary endpoint was all-cause of mortality. Results: In total, 125 with CAD and 206 with no CAD during a median follow-up of 3.3 years were included in this study. After PSM, age (HR, 1.040; 95%CI, 1.001-1.081; p = 0.014) and CAD (HR, 2.164; 95%CI, 1.057-4.430; p = 0.035) remained significant factors for all-cause mortality. Conclusion: CAD evaluated by coronary CTA was found to be at higher risk for all-cause mortality in cancer patients. Due to the retrospective design and lack of information on some medical history and treatments, especially immune checkpoint inhibitors, a large-scale prospective study is needed to further determine the prognostic value of coronary CTA in cancer patients.

16.
Stress Health ; : e3404, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38635165

ABSTRACT

The way individuals handle daily stressors can significantly influence their mental health. Those who struggle with emotion regulation are especially vulnerable to the negative effects of stress. This study explored the role of catastrophizing, a maladaptive emotion regulation strategy, in shaping the relationships between daily stress responses and depressive symptoms. A total of 75 healthy college students participated in the study. We adopted an Ecological Momentary Assessment protocol over 14 consecutive days to capture the day-to-day dynamics of stress reactivity and recovery. Our findings indicate that individuals with higher levels of catastrophizing exhibited increased daily stress reactivity and delayed daily stress recovery, consequently raising their likelihood of experiencing amplified depressive symptoms. In contrast, those with lower levels of catastrophizing did not experience the same negative effects of increased daily stress reactivity on their mental health. These results enhance understanding of how real-life stressors contribute to the development of mental health issues and underscore the importance of adaptive emotion regulation for improved overall health and well-being.

17.
J Res Adolesc ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38650355

ABSTRACT

An exploratory mixed methods design was used to explore age-appropriate characteristics of parental response to emotion (PRE) during adolescence in Chinese families and develop the parental response to adolescents' emotions scale (C-PRAES). Qualitative interviews with 21 parent-adolescent dyads were employed to explore characteristics of PRE in adolescence and generate item pools. Structural validity, criterion validity, measurement invariance across informants (adolescents vs. parents, mothers vs. fathers) and consistency reliability were examined in the quantitative phase (Nadolescent = 702, Nparent = 476). New age-appropriate strategies were generated from qualitative phase: Guidance in reappraisal, Allowing independent regulation, and Avoiding escalation of conflict. The formal version of the C-PRAES comprised items in two dimensions (supportive/non-supportive) and exhibited good validity, reliability, and measurement invariance.

18.
Huan Jing Ke Xue ; 45(5): 3119-3128, 2024 May 08.
Article in Chinese | MEDLINE | ID: mdl-38629572

ABSTRACT

To accurately predict the life-cycle carbon reduction benefits of replacing a diesel heavy-duty truck with an electric one, taking a single heavy-duty truck as the object, the variation trend in electric and diesel carbon emission factors from 2023 to 2050 were predicted; coupled with the life spans and life-cycle mileage of the two types of heavy-duty trucks, a dynamic carbon emission model for the heavy-duty trucks was constructed in stages. The carbon footprints of the trucks under the "Net Zero Emissions by 2050 Scenario (NZE)", "Announced Pledges Scenario (APS)", and "Stated Policies Scenario (STEPS)" were analyzed. In addition, the carbon reduction and carbon reduction rate were calculated. The results showed that battery manufacturing and battery recycling were the main factors to impair the improvement of carbon reduction in the production and recycling stages of electric heavy-duty trucks, respectively. For every 1 g·(kW·h)-1 reduction in the electricity carbon emission factor (CO2), an electric heavy-duty truck could reduce 1.74 t of carbon emissions over its life cycle. Under the three scenarios, the carbon emissions during the operation stage of both types of heavy trucks accounted for more than 90% of the total life-cycle carbon emissions. Carbon reduction benefits from the highest to the lowest were NZE, APS, and STEPS, and their corresponding life-cycle carbon emission reductions were 1054.68, 1021.78, and 1007.97 t, with carbon reduction rates of 54.38%, 52.68%, and 51.97%, respectively.

19.
Cell Mol Life Sci ; 81(1): 175, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38597937

ABSTRACT

Phenotypic transformation of vascular smooth muscle cells (VSMCs) plays a crucial role in abdominal aortic aneurysm (AAA) formation. CARMN, a highly conserved, VSMC-enriched long noncoding RNA (lncRNA), is integral in orchestrating various vascular pathologies by modulating the phenotypic dynamics of VSMCs. The influence of CARMN on AAA formation, particularly its mechanisms, remains enigmatic. Our research, employing single-cell and bulk RNA sequencing, has uncovered a significant suppression of CARMN in AAA specimens, which correlates strongly with the contractile function of VSMCs. This reduced expression of CARMN was consistent in both 7- and 14-day porcine pancreatic elastase (PPE)-induced mouse models of AAA and in human clinical cases. Functional analyses disclosed that the diminution of CARMN exacerbated PPE-precipitated AAA formation, whereas its augmentation conferred protection against such formation. Mechanistically, we found CARMN's capacity to bind with SRF, thereby amplifying its role in driving the transcription of VSMC marker genes. In addition, our findings indicate an enhancement in CAMRN transcription, facilitated by the binding of NRF2 to its promoter region. Our study indicated that CARMN plays a protective role in preventing AAA formation and restrains the phenotypic transformation of VSMC through its interaction with SRF. Additionally, we observed that the expression of CARMN is augmented by NRF2 binding to its promoter region. These findings suggest the potential of CARMN as a viable therapeutic target in the treatment of AAA.


Subject(s)
Aortic Aneurysm, Abdominal , RNA, Long Noncoding , Humans , Mice , Animals , Swine , RNA, Long Noncoding/genetics , Muscle, Smooth, Vascular , NF-E2-Related Factor 2/genetics , Aortic Aneurysm, Abdominal/chemically induced , Aortic Aneurysm, Abdominal/genetics , Disease Models, Animal
20.
J Hepatocell Carcinoma ; 11: 543-562, 2024.
Article in English | MEDLINE | ID: mdl-38496248

ABSTRACT

Objective: Tumor-associated macrophages play a crucial role in the development of hepatocellular carcinoma (HCC). Our study aimed to investigate the relationship between long coding RNA (lncRNA) maternally expressed gene 3 (MEG3), RNA-binding protein human antigen R (HuR), and messenger RNA C-C motif chemokine 5 (CCL5) in the modulation of M1 and M2 macrophage polarization in HCC. Methods: To induce M1 or M2 polarization, LPS/IFNγ- or IL4/IL13 were used to treat bone marrow derived macrophages (BMDMs). The localization of MEG3 in M1 and M2 macrophages was assessed using fluorescence in situ hybridization assay. Expression levels of MEG3, HuR, CCL5, M1, and M2 markers were measured by RT-qPCR or immunofluorescence staining. Flow cytometry was performed to determine the proportion of F4/80+CD206+ and F4/80+CD68+ cells. RNA pulldown assay was performed to detect the binding of lncRNA MEG3 and HuR. The impacts of HuR on CCL5 stability and activity of CCL5 promoter were evaluated using actinomycin D treatment and luciferase reporter assay. Cell migration, invasiveness, and angiogenesis were assessed using transwell migration and invasion assays and a tube formation assay. A mixture of Huh-7 cells and macrophages were injected into nude mice to explore the effect of MEG3 on tumorigenesis. Results: MEG3 promoted M1-like polarization while dampening M2-like polarization of BMDMs. MEG3 bound to HuR in M1 and M2 macrophages. HuR downregulated CCL5 by inhibiting CCL5 transcription in macrophages. In addition, overexpression of MEG3 suppressed cell metastasis, invasion, and angiogenesis by obstructing macrophage M2 polarization. MEG3 inhibited tumorigenesis in HCC via promotion of M1-like polarization and inhibition of M2-like polarization. Rescue experiments showed that depletion of CCL5 in M2 macrophages reversed MEG3-induced suppressive effect on cell migration, invasion, and tube formation. Conclusion: MEG3 suppresses HCC progression by promoting M1-like while inhibiting M2-like macrophage polarization via binding to HuR and thus upregulating CCL5.

SELECTION OF CITATIONS
SEARCH DETAIL
...