Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Res (Camb) ; 13(1): tfae008, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38283824

ABSTRACT

Mitochondrial dysfunction is a key pathological event in the acute liver injury following the overdose of acetaminophen (APAP). Calpain is the calcium-dependent protease, recent studies demonstrate that it is involved in the impairment of mitochondrial dynamics. The mitochondrial unfolded protein response (UPRmt) is commonly activated in the context of mitochondrial damage following pathological insults and contributes to the maintenance of the mitochondrial quality control through regulating a wide range of gene expression. More importantly, it is reported that abnormal aggregation of TDP-43 in mitochondria induced the activation of UPRmt. However, whether it is involved in APAP induced-hepatotoxicity remains unclear. In the present study, C57/BL6 mice were given 300 mg/kg APAP to establish a time-course model of acute liver injury. Furthermore, Calpeptin, the specific inhibiter of calpains, was used to conduct the intervention experiment. Our results showed, APAP exposure produced severe liver injury. Moreover, TDP-43 was obviously accumulated within mitochondria whereas mitochondrial protease LonP1 was significantly decreased. However, these changes exhibited significant recovery at 48 h. By contrast, the mitochondrial protease ClpP and chaperone mtHSP70 and HSP60 were consistently increased, which supported the UPRmt was activated to promote protein homeostasis. Further investigation revealed that calpain-mediated cleavage of TDP-43 could promote the accumulation of TDP-43 in mitochondria compartment, thereby facilitating the activation of UPRmt. Additionally, Calpeptin pretreatment not only protected against APAP-induced liver injury, but also suppressed the formation of TDP-43 aggregates and the activation of UPRmt. Taken together, our findings indicated that in APAP-induced acute liver injury, calpain-mediated cleavage of TDP43 caused its aberrant aggregation on the mitochondria. As a stress-protective response, the induction of UPRmt contributed to the recovery of mitochondrial function.

2.
iScience ; 26(10): 107787, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37731606

ABSTRACT

Exposure to carbon disulfide (CS2) has been associated with an increased incidence of parkinsonism in workers, but the mechanism underlying this association remains unclear. Using a rat model, we investigated the effects of chronic CS2 exposure on parkinsonian pathology. Our results showed that CS2 exposure leads to significant motor impairment and neuronal damage, including loss of dopaminergic neurons and degeneration of the substantia nigra pars compacta (SNpc). The immunoassays revealed that exposure to CS2 induces aggregation of α-synuclein and phosphorylated α-synuclein, as well as activation of necroptosis in the SNpc. Furthermore, in vitro and in vivo experiments demonstrated that the interaction between α-synuclein and the necrosome complex (RIP1, RIP3, and MLKL) is responsible for the loss of neuronal cells after CS2 exposure. Taken together, our results demonstrate that CS2-mediated α-synuclein aggregation can induce dopaminergic neuron damage and parkinsonian behavior through interaction with the necrosome complex.

3.
Toxicol Lett ; 383: 162-176, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37353096

ABSTRACT

Occupational and environmental exposure to acrylamide (ACR) can cause selective peripheral and central nerve fiber degeneration. IP3R-3 is an important transmembrane Ca2+ channel on the endoplasmic reticulum (ER), previous studies have found that ACR could induce Ca2+-dependent calpain activation and axon injury, but the exact role of IP3R-3 in ACR neuropathy is still unclear. Here we show that ACR exposure (40 mg/kg) markedly increased the ubiquitination of IP3R-3 in rat spinal cords, and promoted the degradation of IP3R-3 through the ubiquitin-proteasome pathway. Furthermore, the normal structure of ER, especially the mitochondrial associated membranes (MAMs) component, was significantly impaired in ACR neuropathy, and the ER stress pathway was activated, which indicated that the aberrant increase of cytoplasmic Ca2+ could be attributed the destruction of IP3R-3. Further investigation demonstrated that the proteasome inhibitor MG-132 effectively rescued the IP3R-3 loss, attenuated the intracellular Ca2+ increase, and reduced the axon loss of Neuron 2a (N2a) cells following ACR exposure. Moreover, the calpain inhibitor ALLN also reduced the loss of IP3R-3 and axon injury in N2a cells, but did not alleviate the Ca2+ increase in cytosol, supporting that the abnormal ubiquitination of IP3R-3 was the upstream of the cellular Ca2+ rise and axon damage in ACR neuropathy. Taken together, our results suggested that the aberrant IP3R-3 degradation played an important role in the disturbance of Ca2+ homeostasis and the downstream axon loss in ACR neuropathy, thus providing a potential therapeutic target for ACR neurotoxicity.


Subject(s)
Acrylamide , Peripheral Nervous System Diseases , Rats , Animals , Acrylamide/toxicity , Calpain/metabolism , Rats, Sprague-Dawley , Axons , Endoplasmic Reticulum/metabolism
4.
Food Chem Toxicol ; 171: 113522, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36417989

ABSTRACT

Acrylamide (ACR) is a common neurotoxicant that can induce central-peripheral neuropathy in human beings. ACR from occupational setting and foods poses a potential threat to people's health. Purkinje cells are the only efferent source of cerebellum, and their output is responsible for coordinating motor activity. Recent studies have reported that Purkinje cell injury is one of the earliest neurotoxicity at any dose rate of ACR. However, the mechanism underlying ACR-mediated damage to Purkinje cells remains unclear. This research aimed to investigate whether necroptosis is involved in ACR-induced Purkinje cell death and its regulatory mechanism. In this study, rats were treated with ACR (40 mg/kg/every other day) for 6 weeks to establish an animal model of ACR neuropathy. Furthermore, an intervention experiment was achieved by rapamycin (RAPA), which is commonly used to activate mitophagy and maintain mitochondrial homeostasis. The results demonstrated ACR exposure caused necroptosis of Purkinje cells, mitochondrial dysfunction, and inflammatory response. By contrast, RAPA alleviated mitochondrial dysfunction and inhibited activation of necroptosis signaling pathway following ACR. In conclusion, our findings suggest that mitochondrial dysfunction and activation of necroptotic signaling are associated with the loss of Purkinje cells in ACR poisoning, which can be a potential therapeutic target for ACR neurotoxicity.


Subject(s)
Neurotoxicity Syndromes , Purkinje Cells , Rats , Humans , Animals , Acrylamide/toxicity , Necroptosis , Cerebellum/metabolism , Neurotoxicity Syndromes/metabolism , Mitochondria/metabolism
5.
Mol Neurobiol ; 59(12): 7337-7353, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36171479

ABSTRACT

Sterile α and toll/interleukin 1 receptor motif-containing protein 1 (SARM1) is the defining molecule and central executioner of programmed axon death, also known as Wallerian degeneration. SARM1 has a mitochondrial targeting sequence, and it can bind to and stabilize PTEN-induced putative kinase 1 (PINK1) for mitophagy induction, but the deletion of the mitochondrial localization sequence is found to disrupt the mitochondrial localization of SARM1 in neurons without altering its ability to promote axon degeneration after axotomy. The biological significance of SARM1 mitochondrial localization remains elusive. In this study, we observed that the pro-degeneration factor, SARM1, was upregulated in acrylamide (ACR) neuropathy, a slow, Wallerian-like, programmed axonal death process. The upregulated SARM1 accumulated on mitochondria, interfered with mitochondrial dynamics, and activated PINK1-mediated mitophagy. Importantly, rapamycin (RAPA) intervention eliminated mitochondrial accumulation of SARM1 and partly attenuated ACR neuropathy. Thus, mitochondrial localization of SARM1 may contribute to its clearance through the SARM1-PINK1 mitophagy pathway, which inhibits axonal degeneration through a negative feedback loop. The mitochondrial localization of SARM1 complements the coordinated activity of the pro-survival factor, nicotinamide mononucleotide adenyltransferase 2 (NMNAT2), and SARM1 and is part of the self-limiting molecular mechanisms underpinning programmed axon death in ACR neuropathy. Mitophagy clearance of SARM1 is complementary to the coordinated activity of NMNAT2 and SARM1 in ACR neuropathy.


Subject(s)
Armadillo Domain Proteins , Peripheral Nervous System Diseases , Humans , Armadillo Domain Proteins/metabolism , Mitophagy , Acrylamide/toxicity , Cytoskeletal Proteins/metabolism , Axons/metabolism , Peripheral Nervous System Diseases/chemically induced , Protein Kinases/metabolism
6.
Toxicol Res (Camb) ; 11(3): 486-497, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35782650

ABSTRACT

Background: Mitochondrial dynamics is essential for the maintenance of healthy mitochondrial network. Emerging evidence suggests that mitochondrial dysfunction is closely linked to the pathogenesis of hepatic fibrogenesis following chronic liver injury. However, the role of dynamin-related protein 1 (Drp1)-mediated mitochondrial fission in the context of liver fibrosis remains unclear. Methods and Results: In this study, C57BL/6 mice were used to establish a model of liver fibrosis via oral gavage with CCl4 treatment for 8 weeks. Furthermore, mitochondrial fission intervention experiments were achieved by the mitochondrial division inhibitor 1 (Mdivi-1). The results demonstrated that chronic CCl4 exposure resulted in severe hepatic fibrogenesis and mitochondrial damage. By contrast, pharmacological inhibition of mitochondrial division by Mdivi-1 substantially reduced the changes of mitochondrial dynamics and finally prevented the deposition of extracellular matrix proteins. Mechanistically, excessive mitochondrial fission may activate hepatic stellate cells through RIPK1-MLKL-dependent hepatocyte death, which ultimately promotes liver fibrosis. Conclusion: Our study imply that inhibiting Drp1-mediated mitochondrial fission attenuates CCl4-induced liver fibrosis and may serve as a therapeutic target for retarding progression of chronic liver disease.

7.
Toxicology ; 471: 153176, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35405287

ABSTRACT

Liver fibrosis can lead to liver cirrhosis and hepatocellular carcinoma, and no effective treatment is available in clinical practice. Mitochondrial dysfunction is thought to be closely related to the development of liver fibrosis. Recent studies have reported that abnormal accumulation of TDP-43 on mitochondria may interfere with mitochondrial function in neurodegenerative disorders. However, whether aberrant TDP-43 aggregation is also involved in liver fibrosis has not been investigated. In this study, C57/BL6 mice were treated with CCl4 (escalating doses, three times a week) for 8 weeks to establish a model of liver fibrosis. Furthermore, mitophagy intervention experiment was achieved by the activator rapamycin (RAPA). The results demonstrated that chronic CCl4 exposure resulted in severe mitochondrial damage, inflammatory response and hepatic fibrogenesis. Interestingly, abnormal aggregation of TDP-43 on mitochondria was observed. By contrast, RAPA administration could promote the regression of liver fibrosis. Mechanistically, RAPA could eliminate the accumulation of TDP-43 on mitochondrial through enhancing mitophagy, thereby improving mitochondrial function. Taken together, our study revealed that mitochondrial damage induced by abnormal accumulation of TDP-43 has been implicated in the progression of liver fibrosis. Targeted clearance of mitochondrial TDP-43 may lead to the development of some anti-fibrotic therapies.

8.
Nanoscale ; 6(21): 13043-52, 2014 Nov 07.
Article in English | MEDLINE | ID: mdl-25247467

ABSTRACT

Graphene quantum dot (GQD) is an emerging class of zero-dimensional nanocarbon material with many novel applications. It is of scientific importance to prepare GQDs with more perfect structures, that is, GQDs containing negligible oxygenous defects, for both optimizing their optical properties and helping in their photovoltaic applications. Herein, a new strategy for the facile preparation of "pristine" GQDs is reported. The method we presented is a combination of a bottom-up synthetic and a solvent-induced interface separation process, during which the target products with highly crystalline structure were selected by the organic solvent. The obtained organic soluble GQDs (O-GQDs) showed a significant difference in structure and composition compared with ordinary aqueous soluble GQDs, thus leading to a series of novel properties. Furthermore, O-GQDs were applied as electron-acceptors in a poly(3-hexylthiophene) (P3HT)-based organic photovoltaic device. The performance highlights that O-GQD has potential to be a novel electron-acceptor material due to the sp(2) hybridized carbon atom dominant structure and good solubility in organic solvents.

SELECTION OF CITATIONS
SEARCH DETAIL
...