Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 15309, 2024 07 03.
Article in English | MEDLINE | ID: mdl-38961197

ABSTRACT

Axillary bud is an important aspect of plant morphology, contributing to the final tobacco yield. However, the mechanisms of axillary bud development in tobacco remain largely unknown. To investigate this aspect of tobacco biology, the metabolome and proteome of the axillary buds before and after topping were compared. A total of 569 metabolites were differentially abundant before and 1, 3, and 5 days after topping. KEGG analyses further revealed that the axillary bud was characterized by a striking enrichment of metabolites involved in flavonoid metabolism, suggesting a strong flavonoid biosynthesis activity in the tobacco axillary bud after topping. Additionally, 9035 differentially expressed proteins (DEPs) were identified before and 1, 3, and 5 days after topping. Subsequent GO and KEGG analyses revealed that the DEPs in the axillary bud were enriched in oxidative stress, hormone signal transduction, MAPK signaling pathway, and starch and sucrose metabolism. The integrated proteome and metabolome analysis revealed that the indole-3-acetic acid (IAA) alteration in buds control dormancy release and sustained growth of axillary bud by regulating proteins involved in carbohydrate metabolism, amino acid metabolism, and lipid metabolism. Notably, the proteins related to reactive oxygen species (ROS) scavenging and flavonoid biosynthesis were strongly negatively correlated with IAA content. These findings shed light on a critical role of IAA alteration in regulating axillary bud outgrowth, and implied a potential crosstalk among IAA alteration, ROS homeostasis, and flavonoid biosynthesis in tobacco axillary bud under topping stress, which could improve our understanding of the IAA alteration in axillary bud as an important regulator of axillary bud development.


Subject(s)
Indoleacetic Acids , Metabolome , Nicotiana , Plant Proteins , Proteome , Indoleacetic Acids/metabolism , Nicotiana/metabolism , Nicotiana/growth & development , Proteome/metabolism , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Flavonoids/metabolism , Flowers/metabolism , Flowers/growth & development , Plant Growth Regulators/metabolism
2.
Front Pharmacol ; 15: 1372456, 2024.
Article in English | MEDLINE | ID: mdl-38681197

ABSTRACT

The Nicotiana tabacum L. plant, a medicinal resource, holds significant potential for benefiting human health, as evidenced by its use in Native American and ancient Chinese cultures. Modern medical and pharmaceutical studies have investigated that the abundant and distinctive function metabolites in tobacco including nicotine, solanesol, cembranoid diterpenes, essential oil, seed oil and other tobacco extracts, avoiding the toxic components of smoke, mainly have the anti-oxidation, anti-lipid production, pro-lipid oxidation, pro-insulin sensitivity, anti-inflammation, anti-apoptosis and antimicrobial activities. They showed potential pharmaceutical value mainly as supplements or substitutes for treating neurodegenerative diseases including Alzheimer's and Parkinson's disease, inflammatory diseases including colitis, arthritis, sepsis, multiple sclerosis, and myocarditis, and metabolic syndrome including Obesity and fatty liver. This review comprehensively presents the research status and the molecular mechanisms of tobacco and its metabolites basing on almost all the English and Chinese literature in recent 20 years in the field of medicine and pharmacology. This review serves as a foundation for future research on the medicinal potential of tobacco plants.

3.
mSystems ; 9(3): e0102723, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38421203

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a major public health problem due to the high incidence affecting approximately one-third of the world's population. NAFLD is usually linked to obesity and excessive weight. A subset of patients with NAFLD expresses normal or low body mass index; thus, the condition is called non-obese NAFLD or lean NAFLD. However, patients and healthcare professionals have little awareness and understanding of NAFLD in non-obese individuals. Furthermore, preclinical results from non-obese animal models with NAFLD are unclear. Gut microbiota and their metabolites in non-obese/lean-NAFLD patients differ from those in obese NAFLD patients. Therefore, we analyzed the biochemical indices, intestinal flora, and intestinal metabolites in a non-obese NAFLD mouse model established using a methionine-choline-deficient (MCD) diet. The significantly lean MCD mice had a remarkable fatty liver with lower serum triglyceride and free fatty acid levels, as well as higher alanine transaminase and aspartate transaminase levels than normal mice. 16S RNA sequencing of fecal DNA showed that the overall richness and diversity of the intestinal flora decreased in MCD mice, whereas the Firmicutes:Bacteroidota ratio was increased. g_Tuzzerella, s_Bifidobacterium pseudolongum, and s_Faecalibaculum rodentium were the predominant species in non-obese NAFLD mice. Fecal metabolomics using liquid chromatography-tandem mass spectrometry revealed the potential biomarkers for the prognosis and diagnosis of non-obese NAFLD, including high levels of tyramine glucuronide, 9,12,13-TriHOME, and pantetheine 4'-phosphate, and low levels of 3-carbamoyl-2-phenylpropionaldehyde, N-succinyl-L,L-2,6-diaminopimelate, 4-methyl-5-thiazoleethanol, homogentisic acid, and estriol. Our findings could be useful to identify and develop drugs to treat non-obese NAFLD and lean NAFLD. IMPORTANCE: Patients and healthcare professionals have little awareness and understanding of NAFLD in non-obese individuals. In fact, about 40% of people with NAFLD worldwide are non-obese, and nearly one-fifth are lean. Lean NAFLD unfortunately may be unnoticed for years and remains undetected until hepatic damage is advanced and the prognosis is compromised. This study focused on the lean NAFLD, screened therapeutic agents, and biomarkers for the prognosis and diagnosis using MCD-induced male C57BL/6J mice. The metabolites tyramine glucuronide, 9,12,13-TriHOME, and pantetheine 4'-phosphate, together with the predominant flora including g_Tuzzerella, s_Bifidobacterium pseudolongum, and s_Faecalibaculum rodentium, were specific in non-obese NAFLD mice and might be used as targets for non-obese NAFLD drug exploration. This study is particularly significant for non-obese NAFLDs that need to be more actively noticed and vigilant.


Subject(s)
Bifidobacterium , Firmicutes , Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Pantetheine/analogs & derivatives , Tyramine/analogs & derivatives , Humans , Animals , Mice , Male , Non-alcoholic Fatty Liver Disease/diagnosis , Gastrointestinal Microbiome/genetics , Mice, Inbred C57BL , Obesity/complications , Biomarkers , Choline , Phosphates
5.
Front Plant Sci ; 14: 1078128, 2023.
Article in English | MEDLINE | ID: mdl-36844047

ABSTRACT

Cold stress is one of the major constraints limiting the productivity of many important crops, including tobacco (Nicotiana tabacum L.) production and quality worldwide. However, the role of magnesium (Mg) nutrition in plants has been frequently overlooked, especially under cold stress, and Mg deficiency adversely affects plant growth and development. Here, we evaluated the influence of Mg under cold stress on tobacco morphology, nutrient uptake, photosynthetic and quality attributes. The tobacco plants were grown under different levels of cold stress, i.e., 8°C, 12°C, 16°C, including with a controlled temperature of 25°C, and evaluated their effects with Mg (+Mg) and without Mg (-Mg) application. Cold stress resulted in reduced plant growth. However, the +Mg alleviated the cold stress and significantly increased the plant biomass on an average of 17.8% for shoot fresh weight, 20.9% for root fresh weight, 15.7% for shoot dry weight, and 15.5% for root dry weight. Similarly, the nutrients uptake also increased on average for shoot-N (28.7%), root-N (22.4%), shoot-P (46.9%), root-P (7.2%), shoot-K (5.4%), root-K (28.9%), shoot-Mg (191.4%), root-Mg (187.2%) under cold stress with +Mg compared to -Mg. Mg application significantly boosted the photosynthetic activity (Pn 24.6%) and increased the chlorophyll contents (Chl-a (18.8%), Chl-b (25%), carotenoids (22.2%)) in the leaves under cold stress in comparison with -Mg treatment. Meanwhile, Mg application also improved the quality of tobacco, including starch and sucrose contents, on an average of 18.3% and 20.8%, respectively, compared to -Mg. The principal component analysis revealed that tobacco performance was optimum under +Mg treatment at 16°C. This study confirms that Mg application alleviates cold stress and substantially improves tobacco morphological indices, nutrient absorption, photosynthetic traits, and quality attributes. In short, the current findings suggest that Mg application may alleviate cold stress and improve tobacco growth and quality.

6.
Front Pharmacol ; 13: 925264, 2022.
Article in English | MEDLINE | ID: mdl-36105184

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD), one of the risk factors for hepatitis, cirrhosis, and even hepatic carcinoma, has been a global public health problem. The polyphenol compound theaflavin-3,3'-digallate (TF3), mainly extracted from black tea, has been reported to produce an effect on hypoglycemic and antilipid deposition in vitro. In our study, we further investigated the function and novel mechanisms of TF3 in protecting NAFLD in vivo. By using leptin-deficient obese (ob/ob) mice with NAFLD symptoms, TF3 treatment prevented body weight and waistline gain, reduced lipid accumulation, and alleviated liver function injury, as well as decreased serum lipid levels and TG levels in livers in ob/ob mice, observing no side effects. Furthermore, the transcriptome sequencing of liver tissue showed that TF3 treatment corrected the expression profiles of livers in ob/ob mice compared with that of the model group. It is interesting to note that TF3 might regulate lipid metabolism via the Fads1/PPARδ/Fabp4 axis. In addition, 16S rRNA sequencing demonstrated that TF3 increased the abundance of Prevotellaceae_UCG-001, norank_f_Ruminococcaceae, and GCA-900066575 and significantly decreased that of Parvibacter. Taken together, the effect of TF3 on NAFLD might be related to lipid metabolism regulated by the Fads1/PPARδ/Fabp4 axis and gut microbiota. TF3 might be a promising candidate for NAFLD therapy.

7.
Front Microbiol ; 13: 854792, 2022.
Article in English | MEDLINE | ID: mdl-35602040

ABSTRACT

Ralstonia solanacearum species complex (RSSC) is a diverse group of plant pathogens that attack a wide range of hosts and cause devastating losses worldwide. In this study, we conducted a comprehensive analysis of 131 RSSC strains to detect their genetic diversity, pathogenicity, and evolution dynamics. Average nucleotide identity analysis was performed to explore the genomic relatedness among these strains, and finally obtained an open pangenome with 32,961 gene families. To better understand the diverse evolution and pathogenicity, we also conducted a series of analyses of virulence factors (VFs) and horizontal gene transfer (HGT) in the pangenome and at the single genome level. The distribution of VFs and mobile genetic elements (MGEs) showed significant differences among different groups and strains, which were consistent with the new nomenclatures of the RSSC with three distinct species. Further functional analysis showed that most HGT events conferred from Burkholderiales and played a great role in shaping the genomic plasticity and genetic diversity of RSSC genomes. Our work provides insights into the genetic polymorphism, evolution dynamics, and pathogenetic variety of RSSC and provides strong supports for the new taxonomic classification, as well as abundant resources for studying host specificity and pathogen emergence.

8.
J Agric Food Chem ; 70(16): 4839-4859, 2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35436113

ABSTRACT

The protective effect of plant active ingredients against non-alcoholic fatty liver disease (NAFLD) is becoming increasingly prominent, and the terpenoids have always been the main active compounds in Chinese herbal medicine exerting hepatoprotective effects. However, the related pharmacological effects, especially for monoterpenoids or iridoid glycosides, which have obvious effects on improvement of NAFLD, have not been systematically analyzed. The objective of this review is to systematically examine the molecular mechanisms of monoterpenoids in NAFLD. The signaling pathways of peroxisome proliferator-activated receptor, insulin, nuclear factor κB, toll-like receptor, adipocytokine, RAC-α serine/threonine protein kinase, mammalian target of rapamycin, 5'-AMP-activated protein kinase, and autophagy have been proven to mediate this protective effect. We further compared the experimental data from animal models, including the dosage of these monoterpenoids in detail, and demonstrated that they are effective and safe candidate drugs for NAFLD. This review provides a reference for the development of NAFLD drugs as well as a research guideline for the potential uses of plant monoterpenoids.


Subject(s)
Drugs, Chinese Herbal , Non-alcoholic Fatty Liver Disease , AMP-Activated Protein Kinases/metabolism , Animals , Liver/metabolism , Mammals , Monoterpenes/pharmacology , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism
9.
Front Immunol ; 13: 826889, 2022.
Article in English | MEDLINE | ID: mdl-35251010

ABSTRACT

As an anti-inflammatory alkaloid, nicotine plays dual roles in treating diseases. Here we reviewed the anti-inflammatory and pro-inflammatory effects of nicotine on inflammatory diseases, including inflammatory bowel disease, arthritis, multiple sclerosis, sepsis, endotoxemia, myocarditis, oral/skin/muscle inflammation, etc., mainly concerning the administration methods, different models, therapeutic concentration and duration, and relevant organs and tissues. According to the data analysis from recent studies in the past 20 years, nicotine exerts much more anti-inflammatory effects than pro-inflammatory ones, especially in ulcerative colitis, arthritis, sepsis, and endotoxemia. On the other hand, in oral inflammation, nicotine promotes and aggravates some diseases such as periodontitis and gingivitis, especially when there are harmful microorganisms in the oral cavity. We also carefully analyzed the nicotine dosage to determine its safe and effective range. Furthermore, we summarized the molecular mechanism of nicotine in these inflammatory diseases through regulating immune cells, immune factors, and the vagus and acetylcholinergic anti-inflammatory pathways. By balancing the "beneficial" and "harmful" effects of nicotine, it is meaningful to explore the effective medical value of nicotine and open up new horizons for remedying acute and chronic inflammation in humans.


Subject(s)
Arthritis , Endotoxemia , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Arthritis/drug therapy , Endotoxemia/drug therapy , Humans , Inflammation/drug therapy , Nicotine/adverse effects
10.
Polymers (Basel) ; 14(4)2022 Feb 20.
Article in English | MEDLINE | ID: mdl-35215728

ABSTRACT

The present investigation utilizes tobacco stalks flour and magnesium oxysulfate whiskers as fillers to enhancers the recycle polypropylene through melt blending and injection molding. Studied the microscopic morphology, mechanical, thermal, and antibacterial properties of recycled polypropylene (rPP) based composites with different weight ratios of tobacco stalks flour (TSF) and magnesium oxysulfate whiskers (MOSw). Composites' morphological studies indicated that tobacco stalks flour, and recycled polypropylene has good adhesion, improving composites' mechanical properties. The addition of TSF did not significantly change the tensile strength of rPP, but it can effectively increase the flexural strength and flexural modulus. Compared with rPP, adding 30 wt% tobacco stalks flour to rPP can increase the flexural strength by about 32.74%. Meanwhile, the addition of magnesium oxysulfate whiskers further improves the material's tensile strength. An increase in tobacco stalks flour content in the rPP enhances the crystallization temperature and degree of crystallinity of the polymer. In addition, attributed to the existence of tobacco stalks flour hydrophilic and antibacterial ability, the water absorption of the hybrid composites was increased and obtained antibacterial ability. Hence, this study provides a new development idea for tobacco stalks r recycling and applications.

11.
Materials (Basel) ; 15(3)2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35160869

ABSTRACT

A large amount of biomass straw waste is generated every year in the world, which can cause serious environmental pollution and resource waste if disposed of improperly. At present, biomass-derived porous carbon materials prepared from biomass waste as a carbon source have garnered attention due to their renewability, huge reserves, low cost, and environmental benevolence. In this work, high-performance carbon materials were prepared via a one-step carbonization-activation method and ball milling, with waste tobacco straw as precursor and nano-ZnO as template and activator. The specific surface area and porous structure of biomass-derived carbon could be controlled by carbonization temperature, which is closely related to the electrochemical performances of the carbon material. It was found that, when the carbonization temperature was 800 °C, the biochar possesses maximum specific surface area (1293.2 m2·g-1) and exhibits high capacitance of 220.7 F·g-1, at 1 A·g-1 current density in a three-electrode configuration with 6 M KOH aqueous solution. The capacitance retention maintained about 94.83% at 5 A·g-1 after 3000 cycles. This work proves the porous biochar derived from tobacco straws has a great potential prospect in the field of supercapacitors.

12.
Front Plant Sci ; 12: 767882, 2021.
Article in English | MEDLINE | ID: mdl-34970284

ABSTRACT

Bacterial wilt (BW) caused by Ralstonia solanacearum (R. solanacearum), is a vascular disease affecting diverse solanaceous crops and causing tremendous damage to crop production. However, our knowledge of the mechanism underlying its resistance or susceptibility is very limited. In this study, we characterized the physiological differences and compared the defense-related transcriptomes of two tobacco varieties, 4411-3 (highly resistant, HR) and K326 (moderately resistant, MR), after R. solanacearum infection at 0, 10, and 17 days after inoculation (dpi). A total of 3967 differentially expressed genes (DEGs) were identified between the HR and MR genotypes under mock condition at three time points, including1395 up-regulated genes in the HR genotype and 2640 up-regulated genes in the MR genotype. Also, 6,233 and 21,541 DEGs were induced in the HR and MR genotypes after R. solanacearum infection, respectively. Furthermore, GO and KEGG analyses revealed that DEGs in the HR genotype were related to the cell wall, starch and sucrose metabolism, glutathione metabolism, ABC transporters, endocytosis, glycerolipid metabolism, and glycerophospholipid metabolism. The defense-related genes generally showed genotype-specific regulation and expression differences after R. solanacearum infection. In addition, genes related to auxin and ABA were dramatically up-regulated in the HR genotype. The contents of auxin and ABA in the MR genotype were significantly higher than those in the HR genotype after R. solanacearum infection, providing insight into the defense mechanisms of tobacco. Altogether, these results clarify the physiological and transcriptional regulation of R. solanacearum resistance infection in tobacco, and improve our understanding of the molecular mechanism underlying the plant-pathogen interaction.

13.
Front Plant Sci ; 12: 659130, 2021.
Article in English | MEDLINE | ID: mdl-34122479

ABSTRACT

Seaweed extracts (SEs) have been widely used as biostimulants in crop management due to their growth-promoting and stress-resistant effects. To date, there are few reports of the effect of SEs on sucrose content and cane yield. Here, we conducted field experiments for three consecutive growth seasons (2017∼2019) in two areas (Suixi and Wengyuan) of China, to investigate the yield and sugar content of sugarcane in response to SE treatment at different growth stages. The results showed that spraying SEs once at seedling (S), early elongation (E), and early mature (M) stages, respectively, once at S and E stages, respectively, or once at the S stage increased the cane yield by 9.23, 9.01, and 3.33%, respectively, implying that SEs application at the early elongation stage played a vital role in promoting sugarcane growth. Photosynthetic parameters and nutrient efficiency analysis showed that spraying SEs at S and E stages enhanced the net photosynthetic rate, transpiration rate, and water use efficiency, and increased N, P, or K utilization efficiency, compared with those of the control. Notably, cane yield increasing rate of SEs in 2017 and 2018 were higher than those in 2019 in Wengyuan but lower than those in 2019 in Suixi. Interestingly, the total rainfall and monthly average rainfall in 2017 and 2018 were lower than those in 2019 in Wengyuan but higher than those in 2019 in Suixi. The results suggested that the yield increasing rate of SEs on sugarcane was better in less rainfall years. The sucrose content of sugarcane showed no difference between spraying SEs at the M stage alone or at the three growth stages but was higher than those of SE treatments at S and/or E stages. Enzyme activity analysis showed that spraying SEs at the M stage increased the activity of sucrose phosphate synthase activity by 9.14% in leaves and 15.16% in stems, and decreased soluble acid invertase activity in stems by 16.52%, which contributed to the sucrose increase of 5.00%. The above results suggested that SEs could increase cane yield and promote sucrose accumulation in sugarcane. The yield increasing effect was more obvious under conditions of drought stress.

14.
Materials (Basel) ; 14(7)2021 Mar 31.
Article in English | MEDLINE | ID: mdl-33807316

ABSTRACT

Large quantities of tobacco stalks residues are generated and discarded as crop waste or combusted directly every year. Thus, we need to find an appropriate way to dispose of this type of waste and recycle it. The conversion of biomass waste into electrode materials for supercapacitors is entirely in line with the concept of sustainability and green. In this paper, tobacco-stalk-based, porous activated carbon (TC) was successfully synthesized by high-temperature and high-pressure hydrothermal pre-carbonization and KOH activation. The synthesized TC had a high pore volume and a large surface area of 1875.5 m2 g-1, in which there were many mesopores and interconnected micro-/macropores. The electrochemical test demonstrated that TC-1 could reach a high specific capacitance of up to 356.4 F g-1 at a current density of 0.5 A g-1, which was carried in 6M KOH. Additionally, a symmetrical supercapacitor device was fabricated by using TC-1 as the electrode, which delivered a high energy density up to 10.4 Wh kg-1 at a power density of 300 W kg-1, and excellent long-term cycling stability (92.8% of the initial capacitance retention rate after 5000 cycles). Therefore, TC-1 is considered to be a promising candidate for high-performance supercapacitor electrode materials and is a good choice for converting tobacco biomass waste into a resource.

15.
Polymers (Basel) ; 12(9)2020 Aug 31.
Article in English | MEDLINE | ID: mdl-32878229

ABSTRACT

The recycling of macromolecular biowastes has been a problem for the agriculture industry. In this study, a novel N, S-codoped activated carbon material with an ultrahigh specific area was produced for the application of a supercapacitor electrode, using tobacco stalk biowastes as the carbon source, KOH as the activating agents and thiourea as the doping agent. Tobacco stalk is mainly composed of cellulose, but also contains many small molecules and inorganic salts. KOH activation resulted in many mesopores, giving the tobacco stem-activated carbon a large specific surface area and double-layer capacitance. The specific surface area of the samples reached up to 3733 m2·g-1, while the maximum specific capacitance of the samples obtained was up to 281.3 F·g-1 in the 3-electrode tests (1 A·g-1). The doping of N and S elements raised the specific capacitance significantly, which could be increased to a value as high as 422.5 F·g-1 at a current density of 1 A·g-1 in the 3-electrode tests, but N, S-codoping also led to instability. The results of this article prove that tobacco stalks could be efficiently reused in the field of supercapacitors.

16.
Environ Sci Pollut Res Int ; 27(28): 35249-35260, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32592057

ABSTRACT

Using king grass (Pennisetum purpureum Schumach. × Pennisetum glaucum (L.) R.Br.) for phytoextraction is a promising technology for producing large amounts of biomass fuel while remediating contaminated soil. To assess the practical phytoextraction capacity of king grass, we conducted a field experiment with three different soil types (loam, sandy loam, clay loam) and cadmium (Cd) concentrations (0, 0.25, 0.5, 1, 2, 4, 8, and 16 mg kg-1, aged stably for 6 years). King grass were harvested at two different periods (elongation and maturity) to identify the optimal harvest time for extraction efficiency. The results showed that all treatments had bioconcentration factor (BCF) > 1 and translocation factor (TF) < 1; Cd is mainly stored in the roots. However, due to a high shoot biomass, the highest quantity of Cd extracted from shoots was 2.75 mg plant-1, from the experimental group with 16 mg kg-1 Cd added in sandy loam. A significant positive relationship (P < 0.05) was observed between the amount of Cd extracted from king grass stems, leaves, and roots from soil with the diethylene triamine pentacetate acid (DTPA) extractable Cd concentration. The Cd concentration in shoots at the maturity stage is lower than at the elongation stage, mainly due to the effect of biological dilution. Meanwhile, there is significantly more biomass (P < 0.05) at the maturity stage than at the elongation stage. At the latter, the extraction efficiency of the three soils was loam > sandy loam > clay loam, while at maturity it was sandy loam > clay loam > loam. This change in extraction efficiency can be attributed mainly to differences in soil DTPA-extractable Cd concentration and growth rate caused by differences in soil physical and chemical properties. According to calculations from multiple harvests using three types of soil, remediating contaminated soil with 0-16 mg kg-1 Cd would take 13.9-224.5 and 19.5-250.6 years, extracting 7.21-265.23 and 4.96-330.52 g ha-1 Cd while producing 33.62-66.50 and 73.8-110.5 t ha-1 dry biomass at the elongation (90 days) and maturity (120 days) stages, respectively. In summary, king grass has major potential for remediating Cd-contaminated soil while producing large volumes of biofuel.


Subject(s)
Pennisetum , Soil Pollutants/analysis , Biodegradation, Environmental , Biomass , Cadmium/analysis , Soil
17.
Sci Total Environ ; 619-620: 1530-1537, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29129329

ABSTRACT

Although biological nitrogen (N) fixation (BNF) is an important N input process in subtropical forest ecosystems, how the diazotrophic communities related to this process respond to N and phosphorus (P) inputs is largely unknown. We investigated the effects of exogenous N and/or P inputs on N2-fixation activity, diazotrophic abundance and community composition using a continuous application of fertilizers over 5years experiment in a Chinese fir plantation. The fertilization regimes included control (CK), P treatment (P), low N addition treatment (N1), high N addition treatment (N2), low N and P addition treatment (N1P) and high N with P addition treatment (N2P). N2-fixation activity was determined using the acetylene reduction assay (ARA). Quantitative PCR and Illumina Miseq sequencing of nifH gene were performed to analyze diazotrophic abundance and community composition, respectively. Our results showed that P addition increased N2-fixation activity and nifH gene abundance by 189.07nmol C2H4 and 1.02×107copiesg-1 dry soil, respectively, while were reduced by 1.19nmol C2H4 and 2.04×106copiesg-1 dry soil when N was added. The application of P with low N (N1P) effectively alleviated the inhibitory effect of N input on N2-fixation activity. N-related treatments resulted in significant decreases in operational taxonomic unit (OTU) richness and shifts in diazotrophic community structure. N2-fixation activity and nifH gene abundance were strongly and positively correlated with soil pH and negatively correlated with mineral N (NH4+-N and NO3--N) contents, while mineral N concentrations rather than soil pH appeared to be the main factor altering diazotrophic community structure. These results revealed that P addition played a positive role in regulating biological nitrogen fixation in subtropical forest ecosystems.


Subject(s)
Cunninghamia/microbiology , Fertilizers , Nitrogen Fixation , Nitrogen/analysis , Phosphorus/analysis , Soil Microbiology , China , Forests , Genes, Bacterial
18.
PLoS One ; 10(5): e0126306, 2015.
Article in English | MEDLINE | ID: mdl-25955765

ABSTRACT

Sugarcane is the most important crop for supplying sugar. Due to its high biomass, sugarcane needs to absorb a large amount of potassium (K) throughout its lifecycle. In South China, a deficiency of K available in soil restricts the production of sugarcane. Increasing the tolerance of sugarcane to low-K will be an effective approach for improving survival of the crop in this area. However, there is little information regarding the mechanism of tolerance to low-K stress in sugarcane. In this study, a customized microarray was used to analyze the changes in the level of transcripts of sugarcane genes 8 h, 24 h and 72 h after exposure to low-K conditions. We identified a total of 4153 genes that were differentially expressed in at least one of the three time points. The number of genes responding to low-K stress at 72 h was almost 2-fold more than the numbers at 8 h and 24 h. Gene ontology (GO) analysis revealed that many genes involved in metabolic, developmental and biological regulatory processes displayed changes in the level of transcripts in response to low-K stress. Additionally, we detected differential expression of transcription factors, transporters, kinases, oxidative stress-related genes and genes in Ca+ and ethylene signaling pathways; these proteins might play crucial roles in improving the tolerance of sugarcane to low-K stress. The results of this study will help to better understand the molecular mechanisms of sugarcane tolerance to low-K.


Subject(s)
Gene Expression Profiling/methods , Plant Proteins/genetics , Potassium/metabolism , Saccharum/growth & development , Gene Expression Regulation, Plant , Gene Ontology , Oligonucleotide Array Sequence Analysis/methods , Plant Roots/genetics , Plant Roots/growth & development , Saccharum/anatomy & histology , Saccharum/genetics , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL
...