Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
1.
J Nanobiotechnology ; 22(1): 295, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807131

ABSTRACT

The signal sequence played a crucial role in the efficacy of mRNA vaccines against virus pandemic by influencing antigen translation. However, limited research had been conducted to compare and analyze the specific mechanisms involved. In this study, a novel approach was introduced by substituting the signal sequence of the mRNA antigen to enhance its immune response. Computational simulations demonstrated that various signal peptides differed in their binding capacities with the signal recognition particle (SRP) 54 M subunit, which positively correlated with antigen translation efficiency. Our data revealed that the signal sequences of tPA and IL-6-modified receptor binding domain (RBD) mRNA vaccines sequentially led to higher antigen expression and elicited more robust humoral and cellular immune protection against the SARS-CoV-2 compared to the original signal sequence. By highlighting the importance of the signal sequence, this research provided a foundational and safe approach for ongoing modifications in signal sequence-antigen design, aiming to optimize the efficacy of mRNA vaccines.


Subject(s)
Protein Sorting Signals , SARS-CoV-2 , mRNA Vaccines , Animals , Mice , SARS-CoV-2/immunology , COVID-19/prevention & control , COVID-19/immunology , Mice, Inbred BALB C , RNA, Messenger/genetics , COVID-19 Vaccines/immunology , Female , Humans , Antigens, Viral/immunology , Antigens, Viral/genetics , Antigens, Viral/chemistry , Antibodies, Viral/immunology , Immunity, Humoral , Vaccines, Synthetic/immunology , Immunity, Cellular
2.
Food Chem Toxicol ; 187: 114631, 2024 May.
Article in English | MEDLINE | ID: mdl-38570025

ABSTRACT

Toosendanin (TSN) is the main active compound derived from Melia toosendan Sieb et Zucc with various bioactivities. However, liver injury was observed in TSN limiting its clinical application. Lipid metabolism plays a crucial role in maintaining cellular homeostasis, and its disruption is also essential in TSN-induced hepatotoxicity. This study explored the hepatotoxicity caused by TSN in vitro and in vivo. The lipid droplets were significantly decreased, accompanied by a decrease in fatty acid transporter CD36 and crucial enzymes in the lipogenesis including ACC and FAS after the treatment of TSN. It was suggested that TSN caused lipid metabolism disorder in hepatocytes. TOFA, an allosteric inhibitor of ACC, could partially restore cell survival via blocking malonyl-CoA accumulation. Notably, TSN downregulated the LXRα/Lipin1/SREBP1 signaling pathway. LXRα activation improved cell survival and intracellular neutral lipid levels, while SREBP1 inhibition aggravated the cell damage and caused a further decline in lipid levels. Male Balb/c mice were treated with TSN (5, 10, 20 mg/kg/d) for 7 days. TSN exposure led to serum lipid levels aberrantly decreased. Moreover, the western blotting results showed that LXRα/Lipin1/SREBP1 inhibition contributed to TSN-induced liver injury. In conclusion, TSN caused lipid metabolism disorder in liver via inhibiting LXRα/Lipin1/SREBP1 signaling pathway.


Subject(s)
Chemical and Drug Induced Liver Injury , Drugs, Chinese Herbal , Lipid Metabolism Disorders , Triterpenes , Mice , Animals , Male , Lipid Metabolism , Drugs, Chinese Herbal/pharmacology , Chemical and Drug Induced Liver Injury/etiology , Lipids
3.
J Ethnopharmacol ; 330: 118196, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38631488

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Rosmarinic acid (RA), a natural polyphenol abundant in numerous herbal remedies, has been attracting growing interest owing to its exceptional ability to protect the liver. Toosendanin (TSN), a prominent bioactive compound derived from Melia toosendan Siebold & Zucc., boasts diverse pharmacological properties. Nevertheless, TSN possesses remarkable hepatotoxicity. Intriguingly, the potential of RA to counteract TSN-induced liver damage and its probable mechanisms remain unexplored. AIM OF THE STUDY: This study is aimed at exploring whether RA can alleviate TSN-induced liver injury and the potential mechanisms involved autophagy. MATERIALS AND METHODS: CCK-8 and LDH leakage rate assay were used to evaluate cytotoxicity. Balb/c mice were intraperitoneally administered TSN (20 mg/kg) for 24 h after pretreatment with RA (0, 40, 80 mg/kg) by gavage for 5 days. The autophagic proteins P62 and LC3B expressions were detected using western blot and immunohistochemistry. RFP-GFP-LC3B and transmission electron microscopy were applied to observe the accumulation levels of autophagosomes and autolysosomes. LysoTracker Red and DQ-BSA staining were used to evaluate the lysosomal acidity and degradation ability respectively. Western blot, immunohistochemistry and immunofluorescence staining were employed to measure the expressions of JAK2/STAT3/CTSC pathway proteins. Dual-luciferase reporter gene was used to measure the transcriptional activity of CTSC and RT-PCR was used to detect its mRNA level. H&E staining and serum biochemical assay were employed to determine the degree of damage to the liver. RESULTS: TSN-induced damage to hepatocytes and livers was significantly alleviated by RA. RA markedly diminished the autophagic flux blockade and lysosomal dysfunction caused by TSN. Mechanically, RA alleviated TSN-induced down-regulation of CTSC by activating JAK2/STAT3 signaling pathway. CONCLUSION: RA could protect against TSN-induced liver injury by activating the JAK2/STAT3/CTSC pathway-mediated autophagy and lysosomal function.


Subject(s)
Autophagy , Chemical and Drug Induced Liver Injury , Cinnamates , Depsides , Janus Kinase 2 , Lysosomes , Rosmarinic Acid , STAT3 Transcription Factor , Signal Transduction , Animals , Humans , Male , Mice , Autophagy/drug effects , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/prevention & control , Cinnamates/pharmacology , Depsides/pharmacology , Drugs, Chinese Herbal/pharmacology , Janus Kinase 2/metabolism , Liver/drug effects , Liver/metabolism , Liver/pathology , Lysosomes/drug effects , Lysosomes/metabolism , Mice, Inbred BALB C , Signal Transduction/drug effects , STAT3 Transcription Factor/metabolism
4.
Toxicol Lett ; 394: 102-113, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38460807

ABSTRACT

Toosendanin (TSN) is the main active component in the traditional herb Melia toosendan Siebold & Zucc, which exhibits promising potential for development due to its diverse pharmacological properties. However, the hepatotoxicity associated with TSN needs further investigation. Previous research has implicated autophagy dysregulation in TSN-induced hepatotoxicity, yet the underlying mechanisms remain elusive. In this study, the mechanisms of signal transducer and activator of transcription 3 (STAT3) in TSN-induced autophagy inhibition and liver injury were explored using Stat3 knockout C57BL/6 mice and HepG2 cells. TSN decreased cell viability, increased lactate dehydrogenase (LDH) production in vitro, and elevated serum aspartate transaminase (AST) and alanine aminotransferase (ALT) levels as well as liver lesions in vivo, suggesting TSN had significant hepatotoxicity. TSN inhibited Janus kinase 2 (JAK2)/STAT3 pathway and the expression of cathepsin C (CTSC). Inhibition of STAT3 exacerbated TSN-induced autophagy inhibition and hepatic injury, whereas activation of STAT3 attenuated these effects of TSN. Mechanistically, STAT3 transcriptionally regulated the level of CTSC gene, which in turn affected autophagy and the process of liver injury. TSN-administered Stat3 knockout mice showed more severe hepatotoxicity, CTSC downregulation, and autophagy blockade than wildtype mice. In summary, TSN caused hepatotoxicity by inhibiting STAT3/CTSC axis-dependent autophagy and lysosomal function.


Subject(s)
Chemical and Drug Induced Liver Injury , Drugs, Chinese Herbal , Triterpenes , Animals , Mice , STAT3 Transcription Factor/metabolism , Cathepsin C/metabolism , Mice, Inbred C57BL , Drugs, Chinese Herbal/pharmacology , Autophagy
5.
Food Addit Contam Part B Surveill ; 17(1): 35-45, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38087650

ABSTRACT

A rapid analytical method for the simultaneous determination of 550 pesticide residues in vegetable samples was developed based on ultra-high performance liquid chromatography-tandem Q/Orbitrap high-resolution mass spectrometry (UPLC-Q/Orbitrap-HRMS). To investigate the risk of exposure to pesticide residues through vegetable consumption, 704 leafy vegetable samples from Shanghai were analysed for multiple residues using this method. A total of 54 pesticide residues were identified in these vegetable samples and 302 samples contained one or more pesticide residue. The levels of the detected pesticides did not pose a health risk in the long term and were acceptable according to the results of the chronic dietary risk assessment. Risk rankings displayed that most of the pesticides were low to medium risk. The findings of this study provide a reference for future pesticide monitoring programmes.


Subject(s)
Pesticide Residues , Pesticides , Pesticides/analysis , Pesticide Residues/analysis , Vegetables/chemistry , Food Contamination/analysis , China , Risk Assessment , Fruit/chemistry
6.
J Mater Chem B ; 11(37): 8933-8942, 2023 09 27.
Article in English | MEDLINE | ID: mdl-37682063

ABSTRACT

The inefficient treatment using protein-based nanovaccines is largely attributed to their inadequate immunogenicity. Herein, we developed a novel fluoropolymer (PF) via ring-opening polymerization and constructed a fluoropolymer-based nanovaccine for tumor immunotherapy. Due to the existence of fluoroalkyl chains, PF not only played a crucial role in tumor antigen delivery but also exhibited a remarkable adjuvant effect in enhancing the immunogenicity of nanovaccines. The nanovaccines formed by mixing PF with a model antigen ovalbumin (OVA) enhanced the uptake of antigen proteins by dendritic cells (DCs) and promoted the maturation and antigen presentation of DCs. Compared with free OVA, PF/OVA showed better efficacy in both pre-cancer prevention and tumor treatment. Furthermore, the proportion of CD4+ T and CD8+ T cells was significantly increased in lymph nodes and tumors of mice immunized with PF/OVA. Additionally, there was a great enhancement in the levels of key anti-tumor cytokines (TNF-α and IFN-γ) in the serum of the PF/OVA immunized mice. Our research has shown that fluoropolymer PF applied as a protein vector and adjuvant has great potential for the development of nanovaccines with robust immunogenicity.


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , Mice , Animals , Fluorocarbon Polymers , Adjuvants, Immunologic , Immunotherapy , Neoplasms/metabolism , Antigens, Neoplasm
7.
Zhongguo Dang Dai Er Ke Za Zhi ; 25(7): 739-744, 2023 Jul 15.
Article in Chinese | MEDLINE | ID: mdl-37529957

ABSTRACT

OBJECTIVES: To explore the relationship between atherogenic index of plasma (AIP) and childhood asthma. METHODS: This retrospective study included 86 children with asthma admitted to the Changzhou Second People's Hospital Affiliated to Nanjing Medical University from July 2020 to August 2022 as the asthma group and 149 healthy children undergoing physical examination during the same period as the control group. Metabolic parameters including total cholesterol, triglycerides, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and blood glucose, as well as general information of the children such as height, weight, body mass index, presence of specific dermatitis, history of inhalant allergen hypersensitivity, family history of asthma, and feeding history, were collected. Multivariable logistic regression analysis was used to study the relationship between AIP, triglycerides, and high-density lipoprotein cholesterol and asthma. The value of AIP, triglycerides, and high-density lipoprotein cholesterol for predicting asthma was assessed using receiver operating characteristic (ROC) curve analysis. RESULTS: The AIP and triglyceride levels in the asthma group were significantly higher than those in the control group, while high-density lipoprotein cholesterol was significantly lower (P<0.05). However, there was no significant difference in total cholesterol and low-density lipoprotein cholesterol between the two groups (P>0.05). Before and after adjusting for height, weight, presence of specific dermatitis, history of inhalant allergen hypersensitivity, family history of asthma, feeding method, and blood glucose, multivariable logistic regression analysis showed that AIP, triglycerides, and high-density lipoprotein cholesterol were associated with asthma (P<0.05). ROC curve analysis showed that the optimal cutoff value for predicting asthma with AIP was -0.333, with a sensitivity of 80.2%, specificity of 55.0%, positive predictive value of 50.71%, and negative predictive value of 82.85%. The area under the curve (AUC) for AIP in predicting asthma was significantly higher than that for triglycerides (P=0.009), but there was no significant difference in AUC between AIP and high-density lipoprotein cholesterol (P=0.686). CONCLUSIONS: AIP, triglycerides, and high-density lipoprotein cholesterol are all associated with asthma. AIP has a higher value for predicting asthma than triglycerides and comparable value to high-density lipoprotein cholesterol.


Subject(s)
Asthma , Dermatitis , Humans , Child , Retrospective Studies , Blood Glucose , Triglycerides , Cholesterol, HDL , Cholesterol, LDL , Asthma/etiology , Risk Factors
8.
Phytomedicine ; 118: 154945, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37437414

ABSTRACT

BACKGROUND: Triptolide (TP) is an important active compound from Tripterygium wilfordii Hook F (TwHF), however, it is greatly limited in clinical practice due to its severe toxicity, especially testicular injury. Melatonin is an endogenous hormone and has beneficial effects on the reproductive system. However, whether triptolide-induced testicular injury can be alleviated by melatonin and the underlying mechanism are not clear. PURPOSE: In this study, we aimed to explore whether triptolide-induced testicular Sertoli cells toxicity can be mitigated by melatonin and the underlying mechanisms involved. METHODS: Cell apoptosis was assessed by flow cytometry, western blot, immunofluorescence and immunohistochemistry. Fluorescent probe Mito-Tracker Red CMXRos was used to observe the mitochondria morphology. Mitochondrial membrane potential and Ca2+ levels were used to investigate mitochondrial function by confocal microscope and flow cytometry. The expression levels of SIRT1/Nrf2 pathway were detected by western blot, immunofluorescence and immunohistochemistry. Small interfering RNA of NRF2 and SIRT1 inhibitor EX527 was used to confirm the role of SIRT1/NRF2 pathway in the mitigation of triptolide-induced Sertoli cell damage by melatonin. Co-Immunoprecipitation assay was used to determine the interaction between SIRT1 and NRF2. RESULTS: Triptolide-induced dysfunction of testicular Sertoli cells was significantly improved by melatonin treatment. Specifically, triptolide-induced oxidative stress damage and changes of mitochondrial morphology, mitochondrial membrane potential, and BTB integrity were alleviated by melatonin. Mechanistically, triptolide inhibited SIRT1 and then reduced the activation of NRF2 pathway via regulating the interaction between SIRT1 and NRF2, thereby downregulating the downstream antioxidant genes, which was reversed by melatonin. Nevertheless, knockdown of NRF2 or inhibition of SIRT1 abolished the protective effect of melatonin. CONCLUSION: Triptolide-induced testicular Sertoli cell damage could be alleviated by melatonin via regulating the crosstalk between SIRT1 and NRF2, which is helpful for developing a new strategy to alleviate triptolide-induced toxicity.


Subject(s)
Melatonin , Phenanthrenes , Male , Humans , Sertoli Cells , Melatonin/pharmacology , Melatonin/metabolism , NF-E2-Related Factor 2/metabolism , Sirtuin 1/metabolism , Oxidative Stress , Phenanthrenes/pharmacology
9.
Article in English | MEDLINE | ID: mdl-37260522

ABSTRACT

Background: Respiratory syncytial virus (RSV) is the main pathogen causing acute bronchiolitis, which is common in infants and young children. A previous study revealed the possible involvement of POU class 2 associating factor 1 (POU2AF1) in RSV-triggered acute bronchiolitis. We attempted to clarify the specific action mechanism of POU2AF1 underlying RSV-triggered inflammation. Methods: RT-qPCR measured POU2AF1 levels in RSV-infected children, mice, and airway epithelial cell lines (HBECs). HE staining showed histopathological features in the lung tissue of RSV-infected mice. ELISA examined the contents of proinflammatory cytokines in RSV-infected mice. Western blotting evaluated the protein abundance of proinflammatory cytokines in RSV-infected HBECs and assessed NF-κB pathway-associated protein expression in RSV-infected mice and RSV-treated HBECs. Results: POU2AF1 presented depletion in RSV-infected children, mice, and HBECs. RSV-infected triggered lung injury and inflammatory cell infiltration in the mouse lung tissue, while POU2AF1 overexpression rescued these changes. RSV-infected induced inflammatory impairment in HBECs, whereas POU2AF1 reversed this effect. POU2AF1 suppressed the upregulated NF-κB pathway-associated protein expression in mice and HBECs under RSV infection. Conclusion: POU2AF1 exerts a protective impact on RSV-induced acute bronchiolitis in vitro and in vivo through the NF-κB pathway. Our research may provide a novel direction for better therapy of RSV-triggered acute bronchiolitis.

10.
PLoS One ; 18(3): e0282194, 2023.
Article in English | MEDLINE | ID: mdl-36928451

ABSTRACT

Urban infrastructure resilience is an important perspective for measuring the development quality of resilient cities and an important way to measure the level of infrastructure development. This paper uses the kernel density estimation, exploratory spatial data analysis, and spatial econometric models to analyze the characteristics of dynamic evolution and the spillover effects of the infrastructure resilience levels in 283 prefecture-level and above cities in China from 2010 to 2019. Our results are as follows. (1) The overall level of urban infrastructure resilience increased. The eastern region had a higher level than the national average. In contrast, the central, western and north-eastern regions had a slightly lower level than the national average. (2) The areas with high and higher resilience levels were mostly cities with more developed economic and social conditions in Eastern China. The areas below moderate resilience levels show a certain degree of clustering and mainly include some cities in Central, Western, and Northeast China. (3) The national level of urban infrastructure resilience shows significant spatial clustering characteristics, and the spatial pattern from coastal to inland regions presents a hotspot-subhotspot-subcoldspot-coldspot distribution. (4) There is a differential spatial spillover effect of national urban infrastructure resilience, which is gradually strengthened under the role of the economy, financial development, population agglomeration and government funding and weakened under the role of urbanization, market consumption and infrastructure investment. By exploring the dynamic evolution of infrastructure resilience in cities at the prefecture level and above and its spatial spillover effects, we provide a scientific basis for avoiding the siphoning effect among cities, improving the level of infrastructure resilience, and guiding the construction and development of resilient cities.


Subject(s)
Economic Development , Urbanization , Cities , China , Spatial Analysis
11.
Acta Biomater ; 162: 120-134, 2023 05.
Article in English | MEDLINE | ID: mdl-36828165

ABSTRACT

Most of the nanomedicines can reduce the side effects of anti-tumor chemical drugs but do not have good enough therapeutic efficacy, largely due to the sustained drug release profile. It might be a promising alternative strategy to develop a cascade-responsive nanoplatform against tumor with the burst release of chemotherapeutics based on the highly efficient tumor cell targeting delivery. In this work, we constructed innovative nanoparticles (PMP/WPH-NPs) consisting of two functional polymers. PMP contained the MMP-2 enzyme sensitive linker and disulfide bond, which could respond to the tumor-overexpressing enzyme MMP-2 and high-level glutathione. While WPH promoted tumor penetration and acid-responsive drug release by modifying cellular penetrating peptides and polymerizing L-histidine. PMP/WPH-NPs exhibited outstanding features including longer blood circulation time, promoted tumor-specific accumulation, enhanced tumor penetration and efficient escape from lysosomes. Subsequently, the model drug paclitaxel (PTX), widely used in the tumor chemotherapy, was encapsulated into PMP/WPH-NPs via an emulsion solvent evaporation method. Within a short period of time, PTX-PMP/WPH-NP in simulated tumor cellular microenvironment could release 8 times more PTX than that in the physiological environment, demonstrating a good potential in tumor cell-specific burst drug release. In addition, PTX-PMP/WPH-NPs exhibited stronger anti-tumor activity than PTX in vitro and in vivo, which also had good biocompatibility according to the hemolysis assay and H&E staining. In summary, our work has succeeded in designing an original polymeric nanoplatform for programmed burst drug release based on the tailored tumor targeting delivery system. This new approach would facilitate the clinical translation of more anti-tumor nanomedicines. STATEMENT OF SIGNIFICANCE: Biomaterials responsive to the tumor-specific stimulus has conventionally used in the targeted-delivery of anti-tumor drugs. However, the levels of common stimulus are not uniformly distributed and not high enough to effectively trigger drug release. In an effort to achieve a better specific drug release and promote the chemotherapeutic efficacy, we constructed a cascade responsive nanoplatform with tumor cell-specific drug burst release profile. The tailored biomaterial could overcome the bio-barriers in vivo and succeeded in the programmed burst drug release based on the tumor cell-specific delivery of chemotherapeutics.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Matrix Metalloproteinase 2 , Pharmaceutical Preparations , Antineoplastic Agents/therapeutic use , Paclitaxel , Neoplasms/drug therapy , Neoplasms/pathology , Polymers/chemistry , Tumor Microenvironment
12.
Toxicol Lett ; 377: 51-61, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36801351

ABSTRACT

Toosendanin (TSN) is the main active compound of Melia toosendan Sieb et Zucc with various bioactivities. In this study, we investigated the role of ferroptosis in TSN-induced hepatotoxicity. The characteristic indicators of ferroptosis were detected including reactive oxygen species (ROS), lipid-ROS, glutathione (GSH), ferrous ion and the expression of glutathione peroxidase 4 (GPX4), which showed that TSN caused ferroptosis in hepatocytes. The results of qPCR analysis and western blotting assay showed that TSN-induced activation of protein kinase R-like endoplasmic reticulum kinase (PERK)- eukaryotic initiation factor 2 α subunit (eIF2α)- activation transcription factor 4 (ATF4) signaling pathway resulted in increasing activation transcription factor 3 (ATF3) expression, which upregulated the expression of transferrin receptor 1 (TFRC). Furthermore, TFRC mediated iron accumulation leading to ferroptosis in hepatocytes. To clarify whether TSN triggered ferroptosis in vivo, male Balb/c mice were treated with the different doses of TSN. The results of hematoxylin-eosin (H&E) staining, 4-hydroxynonenal (4-HNE) staining, malondialdehyde (MDA) content and the protein expression of GPX4 showed that ferroptosis contributed to TSN-induced hepatotoxicity. Iron homeostasis relative protein and PERK- eIF2α- ATF4 signaling pathway also involved in hepatotoxicity of TSN in vivo.


Subject(s)
Chemical and Drug Induced Liver Injury , Drugs, Chinese Herbal , Ferroptosis , Animals , Mice , Male , Eukaryotic Initiation Factor-2/metabolism , Reactive Oxygen Species/metabolism , Transcription Factor 4 , Activating Transcription Factor 4/genetics , Activating Transcription Factor 4/metabolism
13.
Acta Pharm Sin B ; 2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36647424

ABSTRACT

There are currently approximately 4,000 mutations in the SARS-CoV-2 S protein gene and emerging SARS-CoV-2 variants continue to spread rapidly worldwide. Universal vaccines with high efficacy and safety urgently need to be developed to prevent SARS-CoV-2 variants pandemic. Here, we described a novel self-assembling universal mRNA vaccine containing a heterologous receptor-binding domain (HRBD)-based dodecamer (HRBDdodecamer) against SARS-CoV-2 variants, including Alpha (B.1.1.7), Beta (B.1.351), Gamma (B.1.1.28.1), Delta (B.1.617.2) and Omicron (B.1.1.529). HRBD containing four heterologous RBD (Delta, Beta, Gamma, and Wild-type) can form a stable dodecameric conformation under T4 trimerization tag (Flodon, FD). The HRBDdodecamer -encoding mRNA was then encapsulated into the newly-constructed LNPs consisting of a novel ionizable lipid (4N4T). The obtained universal mRNA vaccine (4N4T-HRBDdodecamer) presented higher efficiency in mRNA transfection and expression than the approved ALC-0315 LNPs, initiating potent immune protection against the immune escape of SARS-CoV-2 caused by evolutionary mutation. These findings demonstrated the first evidence that structure-based antigen design and mRNA delivery carrier optimization may facilitate the development of effective universal mRNA vaccines to tackle SARS-CoV-2 variants pandemic.

14.
J Environ Manage ; 326(Pt A): 116681, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36384056

ABSTRACT

Vertical supervision is an important institutional arrangement designed to overcome the challenges of environmental governance and promotion of green development in the region. Based on the panel data of 278 cities in China from 2010 to 2018, we use Central Environmental Protection Inspection (CEPI) as an exogenous policy and the multi-period Difference-in-Differences method to test the role of vertical supervision in promoting regional green transformation. Our findings indicate that CEPI, a typical vertical supervision policy, effectively promotes green transformation regionally by reducing local pollution emissions and improving total factor productivity. The analysis of mechanism shows that local governments mainly promote regional green transformation by increasing the investment in pollutant governance, research and development in green technologies, and updating fixed assets. Our study provides a valuable reference for the implementation of vertical supervision policies and effective governance of local governments by the central government.


Subject(s)
Conservation of Natural Resources , Environmental Policy , Policy , Environmental Pollution , Investments
15.
Toxicol In Vitro ; 86: 105487, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36272531

ABSTRACT

Triptolide (TP) is one of the major components of Tripterygium wilfordii, which is a traditional Chinese medicine widely used in the treatment of various autoimmune and inflammatory diseases. However, the cardiotoxicity induced by TP greatly limits its widespread clinical application. In view of the role of ROS-mediated oxidative stress in TP-induced cardiotoxicity, mitoQ, a mitochondria-targeted ROS scavenger, was used in this study to investigate its protective effect against TP-induced cardiomyocyte toxicity and its possible underlying mechanism. Here we demonstrated that mitoQ could significantly attenuate TP-induced cardiotoxicity in cardiomyocyte H9c2 cells, with a remarkable improvement in cell viability and reduction in ROS levels. P62-Nrf2 signaling pathway has been reported to play a critical role in regulating oxidative stress and protecting cells from harmful stimuli. In this study, we found that mitoQ significantly activated p62-Nrf2 signaling pathway in H9c2 cells with or without TP treatment. Moreover, knockdown of p62 or Nrf2 could block the protective effect of mitoQ against TP in H9c2 cells. Taken together, our study demonstrates that mitoQ can alleviate TP-induced cardiotoxicity via the activation of p62-Nrf2 signaling pathway, which provides new potential strategies to combat TP-induced cardiomyocyte toxicity.


Subject(s)
Cardiotoxicity , NF-E2-Related Factor 2 , Ubiquinone , Humans , Apoptosis , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism , Ubiquinone/analogs & derivatives , Ubiquinone/pharmacology
16.
Pharmaceuticals (Basel) ; 15(12)2022 Dec 03.
Article in English | MEDLINE | ID: mdl-36558960

ABSTRACT

Toosendanin (TSN) is a triterpenoid from the fruit or bark of Melia toosendan Sieb et Zucc, which has clear antitumor and insecticidal activities, but it possesses limiting hepatotoxicity in clinical application. Autophagy is a degradation and recycling mechanism to maintain cellular homeostasis, and it also plays an essential role in TSN-induced hepatotoxicity. Nevertheless, the specific mechanism of TSN on autophagy-related hepatotoxicity is still unknown. The hepatotoxicity of TSN in vivo and in vitro was explored in this study. It was found that TSN induced the upregulation of the autophagy-marker microtubule-associated proteins 1A/1B light chain 3B (LC3B) and P62, the accumulation of autolysosomes, and the inhibition of autophagic flux. The middle and late stages of autophagy were mainly studied. The data showed that TSN did not affect the fusion of autophagosomes and lysosomes but significantly inhibited the acidity, the degradation capacity of lysosomes, and the expression of hydrolase cathepsin B (CTSB). The activation of autophagy could alleviate TSN-induced hepatocyte damage. TSN inhibited the expression of transcription factor EB (TFEB), which is a key transcription factor for many genes of autophagy and lysosomes, such as CTSB, and overexpression of TFEB alleviated the autophagic flux blockade caused by TSN. In summary, TSN caused hepatotoxicity by inhibiting TFEB-lysosome-mediated autophagic flux and activating autophagy by rapamycin (Rapa), which could effectively alleviate TSN-induced hepatotoxicity, indicating that targeting autophagy is a new strategy to intervene in the hepatotoxicity of TSN.

17.
Cells ; 11(16)2022 08 09.
Article in English | MEDLINE | ID: mdl-36010550

ABSTRACT

Although artesunate has been reported to be a promising candidate for colorectal cancer (CRC) treatment, the underlying mechanisms and molecular targets of artesunate are yet to be explored. Here, we report that artesunate acts as a senescence and autophagy inducer to exert its inhibitory effect on CRC in a reactive oxygen species (ROS)-dependent manner. In SW480 and HCT116 cells, artesunate treatment led to mitochondrial dysfunction, drastically promoted mitochondrial ROS generation, and consequently inhibited cell proliferation by causing cell cycle arrest at G0/G1 phase as well as subsequent p16- and p21-mediated cell senescence. Senescent cells underwent endoplasmic reticulum stress (ERS), and the unfolded protein response (UPR) was activated via IRE1α signaling, with upregulated BIP, IRE1α, phosphorylated IRE1α (p-IRE1α), CHOP, and DR5. Further experiments revealed that autophagy was induced by artesunate treatment due to oxidative stress and ER stress. In contrast, N-Acetylcysteine (NAC, an ROS scavenger) and 3-Methyladenine (3-MA, an autophagy inhibitor) restored cell viability and attenuated autophagy in artesunate-treated cells. Furthermore, cellular free Ca2+ levels were increased and could be repressed by NAC, 3-MA, and GSK2350168 (an IRE1α inhibitor). In vivo, artesunate administration reduced the growth of CT26 cell-derived tumors in BALB/c mice. Ki67 and cyclin D1 expression was downregulated in tumor tissue, while p16, p21, p-IRE1α, and LC3B expression was upregulated. Taken together, artesunate induces senescence and autophagy to inhibit cell proliferation in colorectal cancer by promoting excessive ROS generation.


Subject(s)
Colorectal Neoplasms , Endoribonucleases , Animals , Apoptosis , Artesunate/pharmacology , Autophagy , Cell Line, Tumor , Cell Proliferation , Cellular Senescence , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Mice , Protein Serine-Threonine Kinases , Reactive Oxygen Species/metabolism
18.
Iran J Basic Med Sci ; 25(3): 414-418, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35656184

ABSTRACT

Objectives: Cisplatin (CDDP) is a highly effective chemotherapeutic agent, but its clinical application has been limited by nephrotoxicity. Tanshinone Ⅰ (T-I), a phenanthrenequinone compound extracted from the Chinese herb Danshen, has been used to improve circulation and treat cardiovascular diseases. The aim of this study was to investigate the protective effect of T-I on CDDP-induced nephrotoxicity in mice. Materials and Methods: The BALB/c mouse models of nephrotoxicity were established by a single intraperitoneal injection of 20 mg/kg CDDP on the first day of the experiment. Three hours prior to CDDP administration, the mice were dosed with 10 mg/kg and 30 mg/kg T-I for 3 consecutive days intraperitoneally to explore nephroprotection of T-I. Results: Treatment with T-I significantly reduced blood urea nitrogen and creatinine levels in serum observed in CDDP-administered mice, especially at a dose of 30 mg/kg. T-I at 30 mg/kg significantly decreased malondialdehyde levels and increased glutathione levels and the enzymatic activity of catalase in kidney tissue compared to CDDP. Additionally, T-I (30 mg/kg) significantly reversed the CDDP-decreased expression level of superoxide dismutase 2 protein in renal tissue. Histopathological evaluation of the kidneys further confirmed the protective effect of T-I. Conclusion: The findings of this study demonstrate that T-I can protect against CDDP-induced nephrotoxicity through suppression of oxidative stress.

19.
Acta Pharm Sin B ; 12(2): 821-837, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35251919

ABSTRACT

Acidosis, regardless of hypoxia involvement, is recognized as a chronic and harsh tumor microenvironment (TME) that educates malignant cells to thrive and metastasize. Although overwhelming evidence supports an acidic environment as a driver or ubiquitous hallmark of cancer progression, the unrevealed core mechanisms underlying the direct effect of acidification on tumorigenesis have hindered the discovery of novel therapeutic targets and clinical therapy. Here, chemical-induced and transgenic mouse models for colon, liver and lung cancer were established, respectively. miR-7 and TGF-ß2 expressions were examined in clinical tissues (n = 184). RNA-seq, miRNA-seq, proteomics, biosynthesis analyses and functional studies were performed to validate the mechanisms involved in the acidic TME-induced lung cancer metastasis. Our data show that lung cancer is sensitive to the increased acidification of TME, and acidic TME-induced lung cancer metastasis via inhibition of miR-7-5p. TGF-ß2 is a direct target of miR-7-5p. The reduced expression of miR-7-5p subsequently increases the expression of TGF-ß2 which enhances the metastatic potential of the lung cancer. Indeed, overexpression of miR-7-5p reduces the acidic pH-enhanced lung cancer metastasis. Furthermore, the human lung tumor samples also show a reduced miR-7-5p expression but an elevated level of activated TGF-ß2; the expressions of both miR-7-5p and TGF-ß2 are correlated with patients' survival. We are the first to identify the role of the miR-7/TGF-ß2 axis in acidic pH-enhanced lung cancer metastasis. Our study not only delineates how acidification directly affects tumorigenesis, but also suggests miR-7 is a novel reliable biomarker for acidic TME and a novel therapeutic target for non-small cell lung cancer (NSCLC) treatment. Our study opens an avenue to explore the pH-sensitive subcellular components as novel therapeutic targets for cancer treatment.

20.
Acta Pharmacol Sin ; 43(7): 1843-1856, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34845369

ABSTRACT

Ras has long been viewed as a promising target for cancer therapy. Farnesylthiosalicylic acid (FTS), as the only Ras inhibitor has ever entered phase II clinical trials, has yielded disappointing results due to its strong hydrophobicity, poor tumor-targeting capacity, and low therapeutic efficiency. Thus, enhancing hydrophilicity and tumor-targeting capacity of FTS for improving its therapeutic efficacy is of great significance. In this study we conjugated FTS with a cancer-targeting small molecule dye IR783 and characterized the anticancer properties of the conjugate FTS-IR783. We showed that IR783 conjugation greatly improved the hydrophilicity, tumor-targeting and therapeutic potential of FTS. After a single oral administration in Balb/c mice, the relative bioavailability of FTS-IR783 was increased by 90.7% compared with FTS. We demonstrated that organic anion transporting polypeptide (OATP) and endocytosis synergistically drove the uptake of the FTS-IR783 conjugate in breast cancer MDA-MB-231 cells, resulting in superior tumor-targeting ability of the conjugate both in vitro and in vivo. We further revealed that FTS-IR783 conjugate could bind with and directly activate AMPK rather than affecting Ras, and subsequently regulate the TSC2/mTOR signaling pathway, thus achieving 2-10-fold increased anti-cancer therapeutic efficacy against 6 human breast cancer cell lines compared to FTS both in vivo and in vitro. Overall, our data highlights a promising approach for the modification of the anti-tumor drug FTS using IR783 and makes it possible to return FTS back to the clinic with a better efficacy.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Farnesol/analogs & derivatives , Farnesol/pharmacology , Farnesol/therapeutic use , Female , Humans , Mice , Salicylates , ras Proteins/metabolism , ras Proteins/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...