Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 10(2)2020 Feb 07.
Article in English | MEDLINE | ID: mdl-32045998

ABSTRACT

This study puts forward an efficient method for protein detection in virtue of the tremendous fluorescence enhancement property of 6-aza-2-thio-thymine protected gold nanoclusters (ATT-AuNCs). In-depth studies of the protein-induced photoluminescence enhancement mechanism illustrate the mechanism of the interaction between ATT-AuNCs and protein. This new-established probe enables feasible and sensitive quantification of the concentrations of total protein in real samples, such as human serum, human plasma, milk, and cell extracts. The results of this proposed method are in good agreement with those determined by the classical bicinchoninic acid method (BCA method).

2.
Biosens Bioelectron ; 105: 71-76, 2018 May 15.
Article in English | MEDLINE | ID: mdl-29355781

ABSTRACT

This report outlines a highly sensitive and facile electrochemiluminescence (ECL) sensing platform based on a novel high-quantum-yield Au-nanocluster (AuNC) probe for glutathione (GSH) detection. Owing to the prominent quenching effect of GSH on the ECL of the AuNCs, the proposed ECL nanosensor showed a wide response to GSH in the ranges of 1.0 × 10-9-1.0 × 10-5M and 1.0 × 10-5-1.0 × 10-1M and a low detection limit of 3.2 × 10-10M. In addition, the proposed system exhibited good selectivity for GSH in the presence of other chemical/biological interferences. Moreover, since no further functionalization of AuNC-based sensor interface was necessary, together with the stability, high sensitivity and selectivity of the proposed nanosensor, this convenient approach was able to successfully detect GSH in both of human urine samples and blood samples with excellent recoveries, which indicated its promising application under physiological conditions. Of significant importance is that this study not only helps in gaining a better understanding of the applicability of the ECL properties of AuNCs, but also provides a new avenue for the design and development of ECL sensors based on the novel high-quantum-yield AuNC-based probe and other functional-metal-based NC probes.


Subject(s)
Biosensing Techniques/instrumentation , Glutathione/urine , Gold/chemistry , Luminescent Measurements/instrumentation , Metal Nanoparticles/chemistry , Adult , Equipment Design , Humans , Limit of Detection , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...