Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Commun (Lond) ; 44(3): 408-432, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38407943

ABSTRACT

BACKGROUND: Chimeric antigen receptor T (CAR-T) therapy has substantially revolutionized the clinical outcomes of patients with hematologic malignancies, but the cancer-intrinsic mechanisms underlying resistance to CAR-T cells remain yet to be fully understood. This study aims to explore the molecular determinants of cancer cell sensitivity to CAR-T cell-mediated killing and to provide a better understanding of the underlying mechanisms and potential modulation to improve clinical efficacy. METHODS: The human whole-genome CRISPR/Cas9-based knockout screening was conducted to identify key genes that enable cancer cells to evade CD19 CAR-T-cell-mediated killing. The in vitro cytotoxicity assays and evaluation of tumor tissue and bone marrow specimens were further conducted to confirm the role of the key genes in cancer cell susceptibility to CAR-T cells. In addition, the specific mechanisms influencing CAR-T cell-mediated cancer clearance were elucidated in mouse and cellular models. RESULTS: The CRISPR/Cas9-based knockout screening showed that the enrichment of autophagy-related genes (ATG3, BECN1, and RB1CC1) provided protection of cancer cells from CD19 CAR-T cell-mediated cytotoxicity. These findings were further validated by in vitro cytotoxicity assays in cells with genetic and pharmacological inhibition of autophagy. Notably, higher expression of the three autophagy-related proteins in tumor samples was correlated with poorer responsiveness and worse survival in patients with relapsed/refractory B-cell lymphoma after CD19 CAR-T therapy. Bulk RNA sequencing analysis of bone marrow samples from B-cell leukemia patients also suggested the clinical relevance of autophagy to the therapeutic response and relapse after CD19 CAR-T cell therapy. Pharmacological inhibition of autophagy and knockout of RB1CC1 could dramatically sensitize tumor cells to CD19 CAR-T cell-mediated killing in mouse models of both B-cell leukemia and lymphoma. Moreover, our study revealed that cancer-intrinsic autophagy mediates evasion of CAR-T cells via the TNF-α-TNFR1 axis-mediated apoptosis and STAT1/IRF1-induced chemokine signaling activation. CONCLUSIONS: These findings confirm that autophagy signaling in B-cell malignancies is essential for the effective cytotoxic function of CAR-T cells and thereby pave the way for the development of autophagy-targeting strategies to improve the clinical efficacy of CAR-T cell immunotherapy.


Subject(s)
Leukemia, B-Cell , Leukemia, Lymphocytic, Chronic, B-Cell , Receptors, Chimeric Antigen , Humans , Mice , Animals , T-Lymphocytes , Immunotherapy , Autophagy/genetics
2.
Mil Med Res ; 10(1): 52, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37941075

ABSTRACT

Advances in chimeric antigen receptor (CAR)-T cell therapy have significantly improved clinical outcomes of patients with relapsed or refractory hematologic malignancies. However, progress is still hindered as clinical benefit is only available for a fraction of patients. A lack of understanding of CAR-T cell behaviors in vivo at the single-cell level impedes their more extensive application in clinical practice. Mounting evidence suggests that single-cell sequencing techniques can help perfect the receptor design, guide gene-based T cell modification, and optimize the CAR-T manufacturing conditions, and all of them are essential for long-term immunosurveillance and more favorable clinical outcomes. The information generated by employing these methods also potentially informs our understanding of the numerous complex factors that dictate therapeutic efficacy and toxicities. In this review, we discuss the reasons why CAR-T immunotherapy fails in clinical practice and what this field has learned since the milestone of single-cell sequencing technologies. We further outline recent advances in the application of single-cell analyses in CAR-T immunotherapy. Specifically, we provide an overview of single-cell studies focusing on target antigens, CAR-transgene integration, and preclinical research and clinical applications, and then discuss how it will affect the future of CAR-T cell therapy.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Humans , Receptors, Chimeric Antigen/therapeutic use , Receptors, Antigen, T-Cell/genetics , Neoplasms/therapy , Immunotherapy , T-Lymphocytes , Single-Cell Analysis
3.
Tissue Eng Regen Med ; 20(7): 1145-1159, 2023 12.
Article in English | MEDLINE | ID: mdl-37801226

ABSTRACT

BACKGROUND: This study aims to explore the potential mechanism of action of the newly discovered hsa_circ_0128899 (circSPEF2) in diffuse large B-cell lymphoma (DLBCL). METHODS: circSPEF2, miR-16-5p and BTB and CNC homologue 2 (BACH2) expression patterns in DLBCL patients and cell lines were studied by RT-qPCR. The biological function of circSPEF2 in vitro and in vivo was investigated by function acquisition experiments. The proliferation activity of lymphoma cells was detected by MTT. Bax, Caspase-3, and Bcl-2 were determined by Western Blot. Apoptosis and the ratio of CD4 to Treg of immune cells in the co-culture system were analyzed by flow cytometry. The mechanism of action of circSPEF2 in DLBCL progression was further investigated by RIP and dual luciferase reporter experiments. RESULTS: circSPEF2 was a circRNA with abnormally down-regulated expression in DLBCL. Increasing circSPEF2 expression inhibited the proliferative activity and induced apoptosis of lymphoma cells in vitro and in vivo, as well as increased CD4+T cells and decreased Treg cell proportion of immune cells in the tumor microenvironment. Mechanically, circSPEF2 was bound to miR-16-5p expression, while BACH2 was targeted by miR-16-5p. circSPEF2 overexpression-mediated effects on lymphoma progression were reversible by upregulating miR-16-5p or downregulating BACH2. CONCLUSIONS: circSPEF2 can influence DLBCL progression by managing cellular proliferation and apoptosis and the proportion of immune cells Treg and CD4 through the miR-16-5p/BACH2 axis.


Subject(s)
Lymphoma , MicroRNAs , Humans , T-Lymphocytes, Regulatory , MicroRNAs/genetics , Lymphoma/genetics , Cinacalcet , Immunity , Basic-Leucine Zipper Transcription Factors , Tumor Microenvironment
4.
Ann Hematol ; 102(12): 3575-3585, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37814134

ABSTRACT

Chimeric antigen receptor (CAR) T-cell-associated coagulopathy can cause bleeding events. To explore risk factors for hemorrhage after CAR T-cell therapy, we retrospectively analyzed routine indicators in 56 patients with non-Hodgkin lymphoma and B-cell acute lymphoblastic leukemia who received anti-CD19 CAR T-cell therapy. Disturbance of coagulation occurred mainly within one month post infusion, especially on day 7 and 14. The cumulative incidence of bleeding events within one month was 32.8%, with the median onset of 7 (range, 0-28) days. All bleeding events were grade 1-3. Patients who experienced bleeding events within one month had longer prothrombin time, higher IL-6, higher IL-10, and lower platelets before lymphodepletion. There were also correlations among coagulation-, inflammatory-, and tumor burden-related markers. Multi-variate analysis showed IL-10 (> 7.98 pg/mL; adjusted odds ratio [OR], 13.84; 95% confidence interval [CI], 2.03-94.36; P = 0.007) and the endothelial activation and stress index (EASIX, defined as dehydrogenase [U/L] × creatinine [mg/dL] / platelets [×109 cells/L]; >7.65; adjusted OR, 7.06; 95% CI, 1.03-48.23; P = 0.046) were significant risk factors for bleeding events. IL-10 plus the EASIX defined three risk groups for bleeding events with cumulative incidence of 100% (hazard ratio [HR], 14.47; 95% CI, 2.78-75.29; P < 0.0001), 38.5% (HR, 3.68; 95% CI, 0.82-16.67; P = 0.089), and 11.8% (reference), respectively. Future studies are needed to verify the risk assessment models for bleeding events after CAR T-cell treatment in larger cohorts.


Subject(s)
Burkitt Lymphoma , Receptors, Chimeric Antigen , Humans , Immunotherapy, Adoptive/adverse effects , Interleukin-10 , Retrospective Studies , Biomarkers, Tumor , Hemorrhage/epidemiology , Hemorrhage/etiology , Antigens, CD19
5.
Signal Transduct Target Ther ; 8(1): 306, 2023 08 18.
Article in English | MEDLINE | ID: mdl-37591844

ABSTRACT

The immune-cell origin of hematologic malignancies provides a unique avenue for the understanding of both the mechanisms of immune responsiveness and immune escape, which has accelerated the progress of immunotherapy. Several categories of immunotherapies have been developed and are being further evaluated in clinical trials for the treatment of blood cancers, including stem cell transplantation, immune checkpoint inhibitors, antigen-targeted antibodies, antibody-drug conjugates, tumor vaccines, and adoptive cell therapies. These immunotherapies have shown the potential to induce long-term remission in refractory or relapsed patients and have led to a paradigm shift in cancer treatment with great clinical success. Different immunotherapeutic approaches have their advantages but also shortcomings that need to be addressed. To provide clinicians with timely information on these revolutionary therapeutic approaches, the comprehensive review provides historical perspectives on the applications and clinical considerations of the immunotherapy. Here, we first outline the recent advances that have been made in the understanding of the various categories of immunotherapies in the treatment of hematologic malignancies. We further discuss the specific mechanisms of action, summarize the clinical trials and outcomes of immunotherapies in hematologic malignancies, as well as the adverse effects and toxicity management and then provide novel insights into challenges and future directions.


Subject(s)
Cancer Vaccines , Hematologic Neoplasms , Immunoconjugates , Humans , Immunotherapy , Hematologic Neoplasms/therapy , Cancer Vaccines/therapeutic use , Cell- and Tissue-Based Therapy
6.
Blood Cancer J ; 13(1): 61, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37095094

ABSTRACT

Chimeric antigen receptor-T (CAR-T) therapy remains to be investigated in T-cell malignancies. CD7 is an ideal target for T-cell malignancies but is also expressed on normal T cells, which may cause CAR-T cell fratricide. Donor-derived anti-CD7 CAR-T cells using endoplasmic reticulum retention have shown efficacy in patients with T-cell acute lymphoblastic leukemia (ALL). Here we launched a phase I trial to explore differences between autologous and allogeneic anti-CD7 CAR-T therapies in T-cell ALL and lymphoma. Ten patients were treated and 5 received autologous CAR-T therapies. No dose-limiting toxicity or neurotoxicity was observed. Grade 1-2 cytokine release syndrome occurred in 7 patients, and grade 3 in 1 patient. Grade 1-2 graft-versus-host diseases were observed in 2 patients. Seven patients had bone marrow infiltration, and 100% of them achieved complete remission with negative minimal residual disease within one month. Two-fifths of patients achieved extramedullary or extranodular remission. The median follow-up was 6 (range, 2.7-14) months and bridging transplantation was not administrated. Patients treated with allogeneic CAR-T cells had higher remission rate, less recurrence and more durable CAR-T survival than those receiving autologous products. Allogeneic CAR-T cells appeared to be a better option for patients with T-cell malignancies.


Subject(s)
Graft vs Host Disease , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Receptors, Chimeric Antigen , Humans , T-Lymphocytes , Immunotherapy, Adoptive/adverse effects , Graft vs Host Disease/etiology , Antigens, CD19
7.
Cytotherapy ; 25(7): 739-749, 2023 07.
Article in English | MEDLINE | ID: mdl-37074239

ABSTRACT

BACKGROUND AIMS: Combination therapy is being actively explored to improve the efficacy and safety of anti-CD19 chimeric antigen receptor T-cell (CART19) therapy, among which Bruton tyrosine kinase inhibitors (BTKIs) are highly expected. BTKIs may modulate T-cell function and remodel the tumor micro-environment (TME), but the exact mechanisms involved and the steps required to transform different BTKIs into clinical applications need further investigation. METHODS: We examined the impacts of BTKIs on T-cell and CART19 phenotype and functionality in vitro and further explored the mechanisms. We evaluated the efficacy and safety of CART19 concurrent with BTKIs in vitro and in vivo. Moreover, we investigated the effects of BTKIs on TME in a syngeneic lymphoma model. RESULTS: Here we identified that the three BTKIs, ibrutinib, zanubrutinib and orelabrutinib, attenuated CART19 exhaustion mediated by tonic signaling, T-cell receptor (TCR) activation and antigen stimulation. Mechanistically, BTKIs markedly suppressed CD3-ζ phosphorylation of both chimeric antigen receptor and TCR and downregulated the expression of genes associated with T-cell activation signaling pathways. Moreover, BTKIs decreased interleukin 6 and tumor necrosis factor alpha release in vitro and in vivo. In a syngeneic lymphoma model, BTKIs reprogrammed macrophages to the M1 subtype and polarized T helper (Th) cells toward the Th1 subtype. CONCLUSIONS: Our data revealed that BTKIs preserved T-cell and CART19 functionality under persistent antigen exposure and further demonstrated that BTKI administration was a potential strategy for mitigating cytokine release syndrome after CART19 treatment. Our study lays the experimental foundation for the rational application of BTKIs combined with CART19 in clinical practice.


Subject(s)
Lymphoma, B-Cell , Neoplasms , Receptors, Chimeric Antigen , Humans , Receptors, Chimeric Antigen/genetics , Receptors, Antigen, T-Cell/genetics , Lymphoma, B-Cell/drug therapy , Immunotherapy, Adoptive , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...