Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecotoxicol Environ Saf ; 216: 112195, 2021 Apr 03.
Article in English | MEDLINE | ID: mdl-33823368

ABSTRACT

Organic fertilizer usage is been introduced into agricultural practices for preventing the damaging effects of chemical fertilizers. Present study investigated the beneficial role of organic fertilizer (nano-vermicompost) on the growth, oxidative stress parameters, antioxidant and nitrogen metabolism, osmolyte accumulation and mineral elements in tomato under drought stress. Drought stress resulted in reduced growth and biomass accumulation by triggering oxidative stress due to excess accumulation of reactive oxygen species (ROS) and reduced mineral uptake. Application of nano-vermicompost proved significantly beneficial in improving growth and mitigating the drought induced growth decline. Nano-vermicompost increased growth and dry matter content and ameliorated the decline in chlorophyll contents, photosynthesis and PSII activity more significantly at higher concentration (100 mg kg-1 soil). ROS accumulation was significantly reduced by nano-vermicompost application thereby enhancing the membrane stability under normal as well as drought conditions. Furthermore, lipid peroxidation and activities of protease and lypoxygenase were significantly reduced. Drought up-regulated antioxidant system and application of nano-vermicompost further enhanced the activities of antioxidant enzymes and the contents of non-enzymatic antioxidant components. Accumulation of osmolytes including proline, glycine betaine and sugars increased significantly due to nano-vermicompost application. Besides, decline in the activity of nitrate reductase and content of essential mineral elements like nitrogen, potassium and phosphorous was also ameliorated by nano-vermicompost application.

2.
Phytochemistry ; 181: 112582, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33246307

ABSTRACT

Salinity is a major cause of crop losses worldwide. Acetylcholine (ACh) can ameliorate the adverse effects of abiotic stresses on plant growth, including salinity stress; however, the underlying molecular mechanisms of this process are unclear. Here, seedlings of Nicotiana benthamiana grown under normal conditions or exposed to 150 mmol L-1 NaCl salinity stress were then treated with a root application of 10 µM ACh. Exogenous ACh application resulted in the downregulation of the activity of the antioxidant enzymes, ascorbate peroxidase, and catalase. ACh-treated plants had lower levels of reactive oxygen species, including the superoxide anion radical and hydrogen peroxide. Transcriptome analysis indicated that ACh treatment under salt stress promoted the differential expression of 658 genes in leaves of N. benthamiana (527 were upregulated and 131 were downregulated). Gene ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that exogenous ACh application was associated with a substantial increase in the transcripts of genes related to cell wall peroxidases, xyloglucan endotransglucosylases or hydrolases, and expansins, indicating that ACh activates cell wall biosynthesis in salt-stressed plants. ACh also enhanced the expression of genes associated with the auxin, gibberellin, brassinosteroid, and salicylic acid signalling pathways, indicating that ACh induces the activation of these pathways under salt stress. Collectively, these findings indicate that ACh-induced salt tolerance in N. benthamiana seedlings is mediated by the inhibition of antioxidant enzymes, activation of cell wall biosynthesis, and hormone signalling pathways. Stress-induced genes involved in osmotic regulation and oxidation resistance were induced by ACh under salt stress. The genes whose transcript levels were elevated by ACh treatment in salt-stressed N. benthamiana could be used as molecular markers of the physiological status of plants under salt stress.


Subject(s)
Nicotiana , Salt Tolerance , Acetylcholine , Gene Expression Profiling , Gene Expression Regulation, Plant , Salinity , Salt Tolerance/genetics , Stress, Physiological , Nicotiana/genetics , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...