Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Behav Sci Law ; 36(1): 84-97, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29460438

ABSTRACT

The present study examined differences in children's true and false narratives as a function of parental coaching by comparing the verbal markers associated with deception. Children (N = 65, 4-7 years old) played the same game with an adult stranger over three consecutive days. Parents coached their children to falsely allege that they had played a second game and to generate details for the fabricated event. One week after the last play session, children were interviewed about their experiences. For children with the least amount of parental coaching, true and false reports could be distinguished by multiple verbal markers of deception (e.g., cognitive processes, temporal information, self-references). The fabricated reports of children who spent more time being coaching by a parent resembled their truthful reports. These findings have implications for real-world forensic contexts when children have been coached to make false allegations and fabricate information at the behest of a parent.


Subject(s)
Deception , Parent-Child Relations , Parents , Child , Child, Preschool , Female , Humans , Male
2.
Appl Environ Microbiol ; 82(2): 596-607, 2016 01 15.
Article in English | MEDLINE | ID: mdl-26567301

ABSTRACT

Effective microbial forensic analysis of materials used in a potential biological attack requires robust methods of morphological and genetic characterization of the attack materials in order to enable the attribution of the materials to potential sources and to exclude other potential sources. The genetic homogeneity and potential intersample variability of many of the category A to C bioterrorism agents offer a particular challenge to the generation of attributive signatures, potentially requiring whole-genome or proteomic approaches to be utilized. Currently, irradiation of mail is standard practice at several government facilities judged to be at particularly high risk. Thus, initial forensic signatures would need to be recovered from inactivated (nonviable) material. In the study described in this report, we determined the effects of high-dose gamma irradiation on forensic markers of bacterial biothreat agent surrogate organisms with a particular emphasis on the suitability of genomic DNA (gDNA) recovered from such sources as a template for whole-genome analysis. While irradiation of spores and vegetative cells affected the retention of Gram and spore stains and sheared gDNA into small fragments, we found that irradiated material could be utilized to generate accurate whole-genome sequence data on the Illumina and Roche 454 sequencing platforms.


Subject(s)
Bacteria/radiation effects , Biological Warfare Agents , Genome, Bacterial/radiation effects , Bacteria/genetics , Bacteria/growth & development , Forensic Sciences , Gamma Rays , Sequence Analysis, DNA
3.
Toxicol Sci ; 149(2): 503-15, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26615023

ABSTRACT

Clinical manifestations of tetanus and botulism result from an intricate series of interactions between clostridial neurotoxins (CNTs) and nerve terminal proteins that ultimately cause proteolytic cleavage of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins and functional blockade of neurotransmitter release. Although detection of cleaved SNARE proteins is routinely used as a molecular readout of CNT intoxication in cultured cells, impaired synaptic function is the pathophysiological basis of clinical disease. Work in our laboratory has suggested that the blockade of synaptic neurotransmission in networked neuron cultures offers a phenotypic readout of CNT intoxication that more closely replicates the functional endpoint of clinical disease. Here, we explore the value of measuring spontaneous neurotransmission frequencies as novel and functionally relevant readouts of CNT intoxication. The generalizability of this approach was confirmed in primary neuron cultures as well as human and mouse stem cell-derived neurons exposed to botulinum neurotoxin serotypes A-G and tetanus neurotoxin. The sensitivity and specificity of synaptic activity as a reporter of intoxication was evaluated in assays representing the principal clinical and research purposes of in vivo studies. Our findings confirm that synaptic activity offers a novel and functionally relevant readout for the in vitro characterizations of CNTs. They further suggest that the analysis of synaptic activity in neuronal cell cultures can serve as a surrogate for neuromuscular paralysis in the mouse lethal assay, and therefore is expected to significantly reduce the need for terminal animal use in toxin studies and facilitate identification of candidate therapeutics in cell-based screening assays.


Subject(s)
Botulinum Toxins/toxicity , Metalloendopeptidases/toxicity , Neurons/drug effects , Synaptic Transmission/drug effects , Tetanus Toxin/toxicity , Animals , Cells, Cultured , Dizocilpine Maleate/pharmacology , Dose-Response Relationship, Drug , Embryonic Stem Cells/drug effects , Embryonic Stem Cells/physiology , Excitatory Postsynaptic Potentials/drug effects , Humans , Mice , Neurons/physiology , Rats , SNARE Proteins/metabolism , Synaptosomal-Associated Protein 25/analysis
4.
PLoS One ; 10(10): e0140274, 2015.
Article in English | MEDLINE | ID: mdl-26484663

ABSTRACT

The pangenomic diversity in Burkholderia pseudomallei is high, with approximately 5.8% of the genome consisting of genomic islands. Genomic islands are known hotspots for recombination driven primarily by site-specific recombination associated with tRNAs. However, recombination rates in other portions of the genome are also high, a feature we expected to disrupt gene order. We analyzed the pangenome of 37 isolates of B. pseudomallei and demonstrate that the pangenome is 'open', with approximately 136 new genes identified with each new genome sequenced, and that the global core genome consists of 4568±16 homologs. Genes associated with metabolism were statistically overrepresented in the core genome, and genes associated with mobile elements, disease, and motility were primarily associated with accessory portions of the pangenome. The frequency distribution of genes present in between 1 and 37 of the genomes analyzed matches well with a model of genome evolution in which 96% of the genome has very low recombination rates but 4% of the genome recombines readily. Using homologous genes among pairs of genomes, we found that gene order was highly conserved among strains, despite the high recombination rates previously observed. High rates of gene transfer and recombination are incompatible with retaining gene order unless these processes are either highly localized to specific sites within the genome, or are characterized by symmetrical gene gain and loss. Our results demonstrate that both processes occur: localized recombination introduces many new genes at relatively few sites, and recombination throughout the genome generates the novel multi-locus sequence types previously observed while preserving gene order.


Subject(s)
Burkholderia pseudomallei/genetics , Gene Order , Genes, Bacterial/genetics , Genome, Bacterial/genetics , Algorithms , Burkholderia pseudomallei/classification , Burkholderia pseudomallei/isolation & purification , Evolution, Molecular , Gene Transfer, Horizontal , Genetic Variation , Models, Genetic , Recombination, Genetic , Species Specificity
5.
J Vis Exp ; (96)2015 Feb 05.
Article in English | MEDLINE | ID: mdl-25742030

ABSTRACT

Therapeutic and mechanistic studies of the presynaptically targeted clostridial neurotoxins (CNTs) have been limited by the need for a scalable, cell-based model that produces functioning synapses and undergoes physiological responses to intoxication. Here we describe a simple and robust method to efficiently differentiate murine embryonic stem cells (ESCs) into defined lineages of synaptically active, networked neurons. Following an 8 day differentiation protocol, mouse embryonic stem cell-derived neurons (ESNs) rapidly express and compartmentalize neurotypic proteins, form neuronal morphologies and develop intrinsic electrical responses. By 18 days after differentiation (DIV 18), ESNs exhibit active glutamatergic and γ-aminobutyric acid (GABA)ergic synapses and emergent network behaviors characterized by an excitatory:inhibitory balance. To determine whether intoxication with CNTs functionally antagonizes synaptic neurotransmission, thereby replicating the in vivo pathophysiology that is responsible for clinical manifestations of botulism or tetanus, whole-cell patch clamp electrophysiology was used to quantify spontaneous miniature excitatory post-synaptic currents (mEPSCs) in ESNs exposed to tetanus neurotoxin (TeNT) or botulinum neurotoxin (BoNT) serotypes /A-/G. In all cases, ESNs exhibited near-complete loss of synaptic activity within 20 hr. Intoxicated neurons remained viable, as demonstrated by unchanged resting membrane potentials and intrinsic electrical responses. To further characterize the sensitivity of this approach, dose-dependent effects of intoxication on synaptic activity were measured 20 hr after addition of BoNT/A. Intoxication with 0.005 pM BoNT/A resulted in a significant decrement in mEPSCs, with a median inhibitory concentration (IC50) of 0.013 pM. Comparisons of median doses indicate that functional measurements of synaptic inhibition are faster, more specific and more sensitive than SNARE cleavage assays or the mouse lethality assay. These data validate the use of synaptically coupled, stem cell-derived neurons for the highly specific and sensitive detection of CNTs.


Subject(s)
Botulinum Toxins/pharmacology , Embryonic Stem Cells/drug effects , Neural Stem Cells/drug effects , Tetanus Toxin/pharmacology , Animals , Cell Differentiation/drug effects , Embryonic Stem Cells/cytology , Mice , Mice, Inbred C57BL , Neural Stem Cells/cytology , Neurons/cytology , Neurons/drug effects , Synaptic Transmission/drug effects , Synaptic Transmission/physiology
6.
Stat Appl Genet Mol Biol ; 14(3): 227-41, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25781714

ABSTRACT

The use of fold-change (FC) to prioritize differentially expressed genes (DEGs) for post-hoc characterization is a common technique in the analysis of RNA sequencing datasets. However, the use of FC can overlook certain population of DEGs, such as high copy number transcripts which undergo metabolically expensive changes in expression yet fail to exceed the ratiometric FC cut-off, thereby missing potential important biological information. Here we evaluate an alternative approach to prioritizing RNAseq data based on absolute changes in normalized transcript counts (ΔT) between control and treatment conditions. In five pairwise comparisons with a wide range of effect sizes, rank-ordering of DEGs based on the magnitude of ΔT produced a power curve-like distribution, in which 4.7-5.0% of transcripts were responsible for 36-50% of the cumulative change. Thus, differential gene expression is characterized by the high production-cost expression of a small number of genes (large ΔT genes), while the differential expression of the majority of genes involves a much smaller metabolic investment by the cell. To determine whether the large ΔT datasets are representative of coordinated changes in the transcriptional program, we evaluated large ΔT genes for enrichment of gene ontologies (GOs) and predicted protein interactions. In comparison to randomly selected DEGs, the large ΔT transcripts were significantly enriched for both GOs and predicted protein interactions. Furthermore, enrichments were were consistent with the biological context of each comparison yet distinct from those produced using equal-sized populations of large FC genes, indicating that the large ΔT genes represent an orthagonal transcriptional response. Finally, the composition of the large ΔT gene sets were unique to each pairwise comparison, indicating that they represent coherent and context-specific responses to biological conditions rather than the non-specific upregulation of a family of genes. These findings suggest that the large ΔT genes are not a product of random or stochastic phenomenon, but rather represent biologically meaningful changes in the transcriptional program. They furthermore imply that high abundance transcripts are associated with particularly cellular states, and as cells change in response to internal or external conditions, the relative distribution of the abundant transcripts changes accordingly. Thus, prioritization of DEGs based on the concept of metabolic cost is a simple yet powerful method to identify biologically important transcriptional changes and provide novel insights into cellular behaviors.


Subject(s)
Computational Biology/methods , Sequence Analysis, RNA/methods , Transcription, Genetic , Animals , Datasets as Topic , Embryonic Stem Cells , Gene Expression Profiling , Gene Expression Regulation , Gene Regulatory Networks , High-Throughput Nucleotide Sequencing , Mice , Molecular Sequence Annotation , Reproducibility of Results , Transcriptome
7.
F1000Res ; 2: 35, 2013.
Article in English | MEDLINE | ID: mdl-24358889

ABSTRACT

Using paired-end RNA sequencing, we have quantified the deep transcriptional changes that occur during differentiation of murine embryonic stem cells into a highly enriched population of glutamatergic cortical neurons. These data provide a detailed and nuanced account of longitudinal changes in the transcriptome during neurogenesis and neuronal maturation, starting from mouse embryonic stem cells and progressing through neuroepithelial stem cell induction, radial glial cell formation, neurogenesis, neuronal maturation and cortical patterning. Understanding the transcriptional mechanisms underlying the differentiation of stem cells into mature, glutamatergic neurons of cortical identity has myriad applications, including the elucidation of mechanisms of cortical patterning; identification of neurogenic processes; modeling of disease states; detailing of the host cell response to neurotoxic stimuli; and determination of potential therapeutic targets. In future work we anticipate correlating changes in longitudinal gene expression to other cell parameters, including neuronal function as well as characterizations of the proteome and metabolome. In this data article, we describe the methods used to produce the data and present the raw sequence read data in FASTQ files, sequencing run statistics and a summary flatfile of raw counts for 22,164 genes across 31 samples, representing 3-5 biological replicates at each timepoint. We propose that this data will be a valuable contribution to diverse research efforts in bioinformatics, stem cell research and developmental neuroscience studies.

8.
PLoS One ; 8(5): e64423, 2013.
Article in English | MEDLINE | ID: mdl-23691214

ABSTRACT

Glutamate receptor (GluR)-mediated neurotoxicity is implicated in a variety of disorders ranging from ischemia to neural degeneration. Under conditions of elevated glutamate, the excessive activation of GluRs causes internalization of pathologic levels of Ca(2+), culminating in bioenergetic failure, organelle degradation, and cell death. Efforts to characterize cellular and molecular aspects of excitotoxicity and conduct therapeutic screening for pharmacologic inhibitors of excitogenic progression have been hindered by limitations associated with primary neuron culture. To address this, we evaluated glutamate-induced neurotoxicity in highly enriched glutamatergic neurons (ESNs) derived from murine embryonic stem cells. As of 18 days in vitro (DIV 18), ESNs were synaptically coupled, exhibited spontaneous network activity with neurotypic mEPSCs and expressed NMDARs and AMPARs with physiological current:voltage behaviors. Addition of 0.78-200 µM glutamate evoked reproducible time- and dose-dependent metabolic failure in 6 h, with a calculated EC50 value of 0.44 µM at 24 h. Using a combination of cell viability assays and electrophysiology, we determined that glutamate-induced toxicity was specifically mediated by NMDARs and could be inhibited by addition of NMDAR antagonists, increased extracellular Mg(2+) or substitution of Ba(2+) for Ca(2+). Glutamate treatment evoked neurite fragmentation and focal swelling by both immunocytochemistry and scanning electron microscopy. Presentation of morphological markers of cell death was dose-dependent, with 0.78-200 µM glutamate resulting in apoptosis and 3000 µM glutamate generating a mixture of necrosis and apoptosis. Addition of neuroprotective small molecules reduced glutamate-induced neurotoxicity in a dose-dependent fashion. These data indicate that ESNs replicate many of the excitogenic mechanisms observed in primary neuron culture, offering a moderate-throughput model of excitotoxicity that combines the verisimilitude of primary neurons with the flexibility and scalability of cultured cells. ESNs therefore offer a physiologically relevant platform that exhibits characteristic NMDAR responses, and appears suitable to evaluate molecular mechanisms of glutamate-induced excitotoxicity and screen for candidate therapeutics.


Subject(s)
Neurons/cytology , Neurons/drug effects , Neurotoxins/toxicity , Stem Cells/cytology , Animals , Calcium/metabolism , Cell Line , Dose-Response Relationship, Drug , Electrophysiological Phenomena/drug effects , Gene Expression Regulation/drug effects , Glutamates/toxicity , Humans , Mice , Neurons/metabolism , Proteomics , Rats , Receptors, N-Methyl-D-Aspartate/metabolism , Time Factors , Transcription, Genetic/drug effects
9.
BMC Neurosci ; 14: 49, 2013 Apr 18.
Article in English | MEDLINE | ID: mdl-23597229

ABSTRACT

BACKGROUND: Immortalized neuronal cell lines can be induced to differentiate into more mature neurons by adding specific compounds or growth factors to the culture medium. This property makes neuronal cell lines attractive as in vitro cell models to study neuronal functions and neurotoxicity. The clonal human neuroblastoma BE(2)-M17 cell line is known to differentiate into a more prominent neuronal cell type by treatment with trans-retinoic acid. However, there is a lack of information on the morphological and functional aspects of these differentiated cells. RESULTS: We studied the effects of trans-retinoic acid treatment on (a) some differentiation marker proteins, (b) types of voltage-gated calcium (Ca2+) channels and (c) Ca2+-dependent neurotransmitter ([3H] glycine) release in cultured BE(2)-M17 cells. Cells treated with 10 µM trans-retinoic acid (RA) for 72 hrs exhibited marked changes in morphology to include neurite extensions; presence of P/Q, N and T-type voltage-gated Ca2+ channels; and expression of neuron specific enolase (NSE), synaptosomal-associated protein 25 (SNAP-25), nicotinic acetylcholine receptor α7 (nAChR-α7) and other neuronal markers. Moreover, retinoic acid treated cells had a significant increase in evoked Ca2+-dependent neurotransmitter release capacity. In toxicity studies of the toxic gas, phosgene (CG), that differentiation of M17 cells with RA was required to see the changes in intracellular free Ca2+ concentrations following exposure to CG. CONCLUSION: Taken together, retinoic acid treated cells had improved morphological features as well as neuronal characteristics and functions; thus, these retinoic acid differentiated BE(2)-M17 cells may serve as a better neuronal model to study neurobiology and/or neurotoxicity.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Differentiation/drug effects , Cell Size/drug effects , Tretinoin/pharmacology , Calcimycin/pharmacology , Calcium/metabolism , Calcium Channel Blockers/pharmacology , Calcium Channels, N-Type/metabolism , Calcium Ionophores/pharmacology , Cell Line, Tumor , Chemical Warfare Agents/pharmacology , Choline O-Acetyltransferase/metabolism , Gene Expression Regulation/drug effects , Glycine/metabolism , Humans , Nerve Tissue Proteins/metabolism , Neuroblastoma/pathology , Neurotransmitter Agents/metabolism , Phosgene/pharmacology , Potassium Chloride/pharmacology , Receptors, Cholinergic/metabolism , Synapses/drug effects , Synapsins/metabolism , Tritium/metabolism , Tubulin/metabolism
10.
BMC Microbiol ; 12: 250, 2012 Nov 05.
Article in English | MEDLINE | ID: mdl-23126230

ABSTRACT

BACKGROUND: Burkholderia pseudomallei is the etiological agent of melioidosis and a CDC category B select agent with no available effective vaccine. Previous immunizations in mice have utilized the lipopolysaccharide (LPS) as a potential vaccine target because it is known as one of the most important antigenic epitopes in B. pseudomallei. Complicating this strategy are the four different B. pseudomallei LPS O-antigen types: A, B, B2, and rough. Sero-crossreactivity is common among O-antigens of Burkholderia species. Here, we identified the presence of multiple B. pseudomallei O-antigen types and sero-crossreactivity in its near-neighbor species. RESULTS: PCR screening of O-antigen biosynthesis genes, phenotypic characterization using SDS-PAGE, and immunoblot analysis showed that majority of B. mallei and B. thailandensis strains contained the typical O-antigen type A. In contrast, most of B. ubonensis and B. thailandensis-like strains expressed the atypical O-antigen types B and B2, respectively. Most B. oklahomensis strains expressed a distinct and non-seroreactive O-antigen type, except strain E0147 which expressed O-antigen type A. O-antigen type B2 was also detected in B. thailandensis 82172, B. ubonensis MSMB108, and Burkholderia sp. MSMB175. Interestingly, B. thailandensis-like MSMB43 contained a novel serotype B positive O-antigen. CONCLUSIONS: This study expands the number of species which express B. pseudomallei O-antigen types. Further work is required to elucidate the full structures and how closely these are to the B. pseudomallei O-antigens, which will ultimately determine the efficacy of the near-neighbor B serotypes for vaccine development.


Subject(s)
Burkholderia/classification , Burkholderia/immunology , O Antigens/analysis , Animals , Biosynthetic Pathways/genetics , Cross Reactions , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Electrophoresis, Polyacrylamide Gel , Genes, Bacterial , Humans , Immunoblotting , Mice , Molecular Sequence Data , Polymerase Chain Reaction , Sequence Analysis, DNA , Serotyping
11.
PLoS One ; 7(11): e48228, 2012.
Article in English | MEDLINE | ID: mdl-23133618

ABSTRACT

In May of 2011, an enteroaggregative Escherichia coli O104:H4 strain that had acquired a Shiga toxin 2-converting phage caused a large outbreak of bloody diarrhea in Europe which was notable for its high prevalence of hemolytic uremic syndrome cases. Several studies have described the genomic inventory and phylogenies of strains associated with the outbreak and a collection of historical E. coli O104:H4 isolates using draft genome assemblies. We present the complete, closed genome sequences of an isolate from the 2011 outbreak (2011C-3493) and two isolates from cases of bloody diarrhea that occurred in the Republic of Georgia in 2009 (2009EL-2050 and 2009EL-2071). Comparative genome analysis indicates that, while the Georgian strains are the nearest neighbors to the 2011 outbreak isolates sequenced to date, structural and nucleotide-level differences are evident in the Stx2 phage genomes, the mer/tet antibiotic resistance island, and in the prophage and plasmid profiles of the strains, including a previously undescribed plasmid with homology to the pMT virulence plasmid of Yersinia pestis. In addition, multiphenotype analysis showed that 2009EL-2071 possessed higher resistance to polymyxin and membrane-disrupting agents. Finally, we show evidence by electron microscopy of the presence of a common phage morphotype among the European and Georgian strains and a second phage morphotype among the Georgian strains. The presence of at least two stx2 phage genotypes in host genetic backgrounds that may derive from a recent common ancestor of the 2011 outbreak isolates indicates that the emergence of stx2 phage-containing E. coli O104:H4 strains probably occurred more than once, or that the current outbreak isolates may be the result of a recent transfer of a new stx2 phage element into a pre-existing stx2-positive genetic background.


Subject(s)
Escherichia coli Infections/microbiology , Escherichia coli/genetics , Prophages/genetics , Shiga Toxin 2/genetics , Shiga Toxin 2/metabolism , Shiga-Toxigenic Escherichia coli/genetics , Area Under Curve , DNA/metabolism , Disease Outbreaks , Genetic Variation , Genomics , Genotype , Georgia (Republic) , Humans , Microbial Sensitivity Tests , Phenotype , Plasmids/metabolism , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Virulence , Yersinia pestis/genetics
12.
BMC Neurosci ; 13: 127, 2012 Oct 24.
Article in English | MEDLINE | ID: mdl-23095170

ABSTRACT

BACKGROUND: Recently, there has been a strong emphasis on identifying an in vitro model for neurotoxicity research that combines the biological relevance of primary neurons with the scalability, reproducibility and genetic tractability of continuous cell lines. Derived neurons should be homotypic, exhibit neuron-specific gene expression and morphology, form functioning synapses and consistently respond to neurotoxins in a fashion indistinguishable from primary neurons. However, efficient methods to produce neuronal populations that are suitable alternatives to primary neurons have not been available. METHODS: With the objective of developing a more facile, robust and efficient method to generate enriched glutamatergic neuronal cultures, we evaluated the neurogenic capacity of three mouse embryonic stem cell (ESC) lines (R1, C57BL/6 and D3) adapted to feeder-independent suspension culture. Neurogenesis and neuronal maturation were characterized as a function of time in culture using immunological, genomic, morphological and functional metrics. The functional responses of ESNs to neurotropic toxins with distinctly different targets and mechanisms of toxicity, such as glutamate, α-latrotoxin (LTX), and botulinum neurotoxin (BoNT), were also evaluated. RESULTS: Suspension-adapted ESCs expressed markers of pluripotency through at least 30 passages, and differentiation produced 97×106 neural progenitor cells (NPCs) per 10-cm dish. Greater than 99% of embryonic stem cell-derived neurons (ESNs) expressed neuron-specific markers by 96 h after plating and rapidly developed complex axodendritic arbors and appropriate compartmentalization of neurotypic proteins. Expression profiling demonstrated the presence of transcripts necessary for neuronal function and confirmed that ESN populations were predominantly glutamatergic. Furthermore, ESNs were functionally receptive to all toxins with sensitivities and responses consistent with primary neurons. CONCLUSIONS: These findings demonstrate a cost-effective, scalable and flexible method to produce a highly enriched glutamatergic neuron population. The functional characterization of pathophysiological responses to neurotropic toxins and the compatibility with multi-well plating formats were used to demonstrate the suitability of ESNs as a discovery platform for molecular mechanisms of action, moderate-throughput analytical approaches and diagnostic screening. Furthermore, for the first time we demonstrate a cell-based model that is sensitive to all seven BoNT serotypes with EC50 values comparable to those reported in primary neuron populations. These data providing compelling evidence that ESNs offer a neuromimetic platform suitable for the evaluation of molecular mechanisms of neurotoxicity.


Subject(s)
Cell Culture Techniques/methods , Embryonic Stem Cells/physiology , Glutamic Acid/metabolism , Neurons/metabolism , Toxicology/methods , Animals , Botulinum Toxins, Type A/toxicity , Calcium/metabolism , Cell Differentiation/drug effects , Cell Differentiation/physiology , Cell Line , Embryonic Stem Cells/cytology , Embryonic Stem Cells/drug effects , Glutamic Acid/toxicity , Mice , Nerve Tissue Proteins/metabolism , Neurogenesis/drug effects , Neurogenesis/physiology , Neurons/cytology , Neurons/drug effects , Neurons/physiology , Neurotoxins/toxicity , Spider Venoms/toxicity
13.
BMC Res Notes ; 5: 437, 2012 Aug 14.
Article in English | MEDLINE | ID: mdl-22892216

ABSTRACT

BACKGROUND: Simultaneous use of cell-permeant and impermeant fluorescent nuclear dyes is a common method to study cell viability and cell death progression. Although these assays are usually conducted as end-point studies, time-lapse imaging offers a powerful technique to distinguish temporal changes in cell viability at single-cell resolution. SYTO 13 and Hoechst 33342 are two commonly used cell-permeant nuclear dyes; however their suitability for live imaging has not been well characterized. We compare end-point assays with time-lapse imaging studies over a 6 h period to evaluate the compatibility of these two dyes with longitudinal imaging, using both control neurons and an apoptotic neuron model. FINDINGS: In longitudinal assays of untreated neurons, SYTO 13 addition caused acute necrosis within 3 h, whereas neurons imaged with Hoechst remained viable for at least 6 h. In a staurosporine-induced apoptotic model of neurotoxicity, determinations of the mode of cell death and measurements of nuclear size were identical between longitudinal studies using Hoechst and end-point assays. Alternatively, longitudinal studies using 500 nM or 5 nM SYTO 13 were not consistent with end-point assays. CONCLUSIONS: SYTO 13 is acutely neurotoxic and when used in longitudinal studies, masked end-stage morphologic evidence of apoptotic cell death. In contrast, a single application of Hoechst evoked no evidence of toxicity over a 6 h period, and was consistent with end-point characterizations of cell viability and nuclear morphology. For longitudinal characterization of acute cell death, Hoechst is a superior option.


Subject(s)
Benzimidazoles/pharmacology , Fluorescent Dyes/pharmacology , Molecular Imaging/methods , Neurons/drug effects , Single-Cell Analysis/methods , Animals , Benzimidazoles/analysis , Cell Death/drug effects , Cell Differentiation , Cell Membrane Permeability , Cell Nucleus/drug effects , Cell Nucleus/ultrastructure , Cell Nucleus Size/drug effects , Cell Survival/drug effects , Embryonic Stem Cells/cytology , Fluorescent Dyes/analysis , Mice , Microscopy, Fluorescence , Neurons/cytology , Neurons/ultrastructure , Organic Chemicals/analysis , Organic Chemicals/pharmacology , Staurosporine/pharmacology , Time Factors , Time-Lapse Imaging
14.
Int J Microbiol ; 2011: 463096, 2011.
Article in English | MEDLINE | ID: mdl-22121364

ABSTRACT

There is extensive data to support the use of commercial transport media as a stabilizer for known clinical samples; however, there is little information to support their use outside of controlled conditions specified by the manufacturer. Furthermore, there is no data to determine the suitability of said media for biological pathogens, specifically those of interest to the US military. This study evaluates commercial off-the-shelf (COTS) transport media based on sample recovery, viability, and quality of nucleic acids and peptides for nonpathogenic strains of Bacillus anthracis, Yersinia pestis, and Venezuelan equine encephalitis virus, in addition to ricin toxin. Samples were stored in COTS, PBST, or no media at various temperatures over an extended test period. The results demonstrate that COTS media, although sufficient for the preservation of nucleic acid and proteinaceous material, are not capable of maintaining an accurate representation of biothreat agents at the time of collection.

15.
BMC Cancer ; 8: 133, 2008 May 12.
Article in English | MEDLINE | ID: mdl-18474089

ABSTRACT

BACKGROUND: A common element among cancer cells is the presence of improperly controlled transcription. In these cells, the degree of specific activation of some genes is abnormal, and altering the aberrant transcription may therefore directly target cancer. TFIIS is a transcription elongation factor, which directly binds the transcription motor, RNA Polymerase II and allows it to read through various transcription arrest sites. We report on RNA interference of TFIIS, a transcription elongation factor, and its affect on proliferation of cancer cells in culture. METHODS: RNA interference was performed by transfecting siRNA to specifically knock down TFIIS expression in MCF7, MCF10A, PL45 and A549 cells. Levels of TFIIS expression were determined by the Quantigene method, and relative protein levels of TFIIS, c-myc and p53 were determined by C-ELISA. Induction of apoptosis was determined by an enzymatic Caspase 3/7 assay, as well as a non-enzymatic assay detecting cytoplasmic mono- and oligonucleosomes. A gene array analysis was conducted for effects of TFIIS siRNA on MCF7 and MCF10A cell lines. RESULTS: Knockdown of TFIIS reduced cancer cell proliferation in breast, lung and pancreatic cancer cell lines. More specifically, TFIIS knockdown in the MCF7 breast cancer cell line induced cancer cell death and increased c-myc and p53 expression whereas TFIIS knockdown in the non-cancerous breast cell line MCF10A was less affected. Differential effects of TFIIS knockdown in MCF7 and MCF10A cells included the estrogenic, c-myc and p53 pathways, as observed by C-ELISA and gene array, and were likely involved in MCF7 cell-death. CONCLUSION: Although transcription is a fundamental process, targeting select core transcription factors may provide for a new and potent avenue for cancer therapeutics. In the present study, knockdown of TFIIS inhibited cancer cell proliferation, suggesting that TFIIS could be studied as a potential cancer target within the transcription machinery.


Subject(s)
Apoptosis/genetics , Neoplasms/genetics , Neoplasms/pathology , RNA, Small Interfering/genetics , Transcriptional Elongation Factors/antagonists & inhibitors , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/therapy , Cell Growth Processes/genetics , Cell Line, Tumor , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/therapy , Neoplasms/therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/therapy , Proto-Oncogene Proteins c-myc/metabolism , RNA Interference , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcriptional Elongation Factors/biosynthesis , Transcriptional Elongation Factors/genetics , Transfection , Tumor Suppressor Protein p53/metabolism
16.
Proc Natl Acad Sci U S A ; 103(25): 9506-11, 2006 Jun 20.
Article in English | MEDLINE | ID: mdl-16769904

ABSTRACT

RNA polymerase II (Pol II), whose 12 subunits are conserved across eukaryotes, is at the heart of the machinery responsible for transcription of mRNA. Although associated general transcription factors impart promoter specificity, responsiveness to gene- and tissue-selective activators additionally depends on the multiprotein Mediator coactivator complex. We have isolated from tissue extracts a distinct and abundant mammalian Pol II subpopulation that contains an additional tightly associated polypeptide, Gdown1. Our results establish that Gdown1-containing Pol II, designated Pol II(G), is selectively dependent on and responsive to Mediator. Thus, in an in vitro assay with general transcription factors, Pol II lacking Gdown1 displays unfettered levels of activator-dependent transcription in the presence or absence of Mediator. In contrast, Pol II(G) is dramatically less efficient in responding to activators in the absence of Mediator yet is highly and efficiently responsive to activators in the presence of Mediator. Our results reveal a transcriptional control mechanism in which Mediator-dependent regulation is enforced by means of Gdown1, which likely restricts Pol II function only to be reversed by Mediator.


Subject(s)
RNA Polymerase II/metabolism , Amino Acid Sequence , Animals , Cattle , Humans , Molecular Sequence Data , Peptides/chemistry , Peptides/metabolism , Protein Binding , Protein Subunits/metabolism , RNA Polymerase II/isolation & purification , Sequence Alignment , Swine , Transcription, Genetic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...