Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Sci Signal ; 17(833): eabn8003, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652763

ABSTRACT

Inflammasomes are multiprotein platforms that control caspase-1 activation, which process the inactive precursor forms of the inflammatory cytokines IL-1ß and IL-18, leading to an inflammatory type of programmed cell death called pyroptosis. Studying inflammasome-driven processes, such as pyroptosis-induced cell swelling, under controlled conditions remains challenging because the signals that activate pyroptosis also stimulate other signaling pathways. We designed an optogenetic approach using a photo-oligomerizable inflammasome core adapter protein, apoptosis-associated speck-like containing a caspase recruitment domain (ASC), to temporally and quantitatively manipulate inflammasome activation. We demonstrated that inducing the light-sensitive oligomerization of ASC was sufficient to recapitulate the classical features of inflammasomes within minutes. This system showed that there were two phases of cell swelling during pyroptosis. This approach offers avenues for biophysical investigations into the intricate nature of cellular volume control and plasma membrane rupture during cell death.


Subject(s)
CARD Signaling Adaptor Proteins , Inflammasomes , Optogenetics , Pyroptosis , Inflammasomes/metabolism , Optogenetics/methods , Animals , Humans , CARD Signaling Adaptor Proteins/metabolism , CARD Signaling Adaptor Proteins/genetics , Mice , Caspase 1/metabolism , Caspase 1/genetics , Interleukin-1beta/metabolism , Interleukin-1beta/genetics
2.
FEBS J ; 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38273453

ABSTRACT

Eukaryotic cells encounter diverse threats jeopardizing their integrity, prompting the development of defense mechanisms against these stressors. Among these mechanisms, inflammasomes are well-known for their roles in coordinating the inflammatory response against infections. Extensive research has unveiled their multifaceted involvement in cellular processes beyond inflammation. Recent studies emphasize the intricate relationship between the inflammasome and the DNA damage response (DDR). They highlight how the DDR participates in inflammasome activation and the reciprocal impact of inflammasome on DDR and genome integrity preservation. Moreover, novel functions of inflammasome sensors in DDR pathways have emerged, broadening our understanding of their roles. Finally, this review delves into identifying common signals that drive the activation of inflammasome sensors alongside activation cues for the DNA damage response, offering potential insights into shared regulatory pathways between these critical cellular processes.

3.
STAR Protoc ; 4(1): 102076, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36853714

ABSTRACT

Gene-of-interest knockout organoids present a powerful and versatile research tool to study a gene's effects on many biological and pathological processes. Here, we present a straightforward and broadly applicable protocol to generate gene knockouts in mouse organoids using CRISPR-Cas9 technology. We describe the processes of transient transfecting organoids with pre-assembled CRISPR-Cas9 ribonucleoprotein complexes, organoid cell sorting, and establishing clonal organoid culture pairs. We then detail how to confirm the knockout via Western blot analysis.


Subject(s)
CRISPR-Cas Systems , Organoids , Animals , Mice , CRISPR-Cas Systems/genetics , Gene Knockout Techniques , Blotting, Western , Clone Cells
4.
Life Sci Alliance ; 6(4)2023 04.
Article in English | MEDLINE | ID: mdl-36746533

ABSTRACT

NLRP3 is a pattern recognition receptor with a well-documented role in inducing inflammasome assembly in response to cellular stress. Deregulation of its activity leads to many inflammatory disorders including gouty arthritis, Alzheimer disease, and cancer. Whereas its role in the context of cancer has been mostly explored in the immune compartment, whether NLRP3 exerts functions unrelated to immunity in cancer development remains unexplored. Here, we demonstrate that NLRP3 interacts with the ATM kinase to control the activation of the DNA damage response, independently of its inflammasome activity. NLRP3 down-regulation in both broncho- and mammary human epithelial cells significantly impairs ATM pathway activation, leading to lower p53 activation, and provides cells with the ability to resist apoptosis induced by acute genotoxic stress. Interestingly, NLRP3 expression is down-regulated in non-small cell lung cancers and breast cancers, and its expression positively correlates with patient overall survival. Our findings identify a novel non-immune function for NLRP3 in maintaining genome integrity and strengthen the concept of a functional link between innate immunity and DNA damage sensing pathways to maintain cell integrity.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Humans , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Immunity, Innate , DNA Damage , Apoptosis/genetics , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism
5.
Nat Commun ; 12(1): 4360, 2021 07 16.
Article in English | MEDLINE | ID: mdl-34272384

ABSTRACT

The glucocorticoid receptor (GR) regulates gene expression, governing aspects of homeostasis, but is also involved in cancer. Pharmacological GR activation is frequently used to alleviate therapy-related side-effects. While prior studies have shown GR activation might also have anti-proliferative action on tumours, the underpinnings of glucocorticoid action and its direct effectors in non-lymphoid solid cancers remain elusive. Here, we study the mechanisms of glucocorticoid response, focusing on lung cancer. We show that GR activation induces reversible cancer cell dormancy characterised by anticancer drug tolerance, and activation of growth factor survival signalling accompanied by vulnerability to inhibitors. GR-induced dormancy is dependent on a single GR-target gene, CDKN1C, regulated through chromatin looping of a GR-occupied upstream distal enhancer in a SWI/SNF-dependent fashion. These insights illustrate the importance of GR signalling in non-lymphoid solid cancer biology, particularly in lung cancer, and warrant caution for use of glucocorticoids in treatment of anticancer therapy related side-effects.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Chromatin/metabolism , Cyclin-Dependent Kinase Inhibitor p57/metabolism , Glucocorticoids/pharmacology , Lung Neoplasms/metabolism , Receptors, Glucocorticoid/metabolism , Animals , Cell Cycle/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Cell Survival/drug effects , Chromatin/genetics , Chromatin Immunoprecipitation Sequencing , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Cyclin-Dependent Kinase Inhibitor p57/genetics , Enhancer Elements, Genetic , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/genetics , Humans , Imidazoles/pharmacology , Immunohistochemistry , Lung Neoplasms/genetics , Mice , Proteomics , Pyrazines/pharmacology , RNA, Small Interfering , RNA-Seq , Receptor, IGF Type 1/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Xenograft Model Antitumor Assays
6.
Sci Rep ; 10(1): 4077, 2020 03 05.
Article in English | MEDLINE | ID: mdl-32139766

ABSTRACT

Early 2 factor (E2F) family transcription factors participate in myriad cell biological processes including: the cell cycle, DNA repair, apoptosis, development, differentiation, and metabolism. Circadian rhythms influence many of these phenomena. Here we find that a mammalian circadian rhythm component, Cryptochrome 2 (CRY2), regulates E2F family members. Furthermore, CRY1 and CRY2 cooperate with the E3 ligase complex SKP-CULLIN-FBXL3 (SCFFBXL3) to reduce E2F steady state protein levels. These findings reveal an unrecognized molecular connection between circadian clocks and cell cycle regulation and highlight another mechanism to maintain appropriate E2F protein levels for proper cell growth.


Subject(s)
Circadian Rhythm , Cryptochromes/physiology , E2F Transcription Factors/metabolism , Gene Expression Regulation , Transcription Factors/metabolism , Ubiquitin-Protein Ligase Complexes/metabolism , Animals , E2F Transcription Factors/genetics , Mice, Knockout , Transcription Factors/genetics , Ubiquitin-Protein Ligase Complexes/genetics
7.
Sci Rep ; 9(1): 198, 2019 01 17.
Article in English | MEDLINE | ID: mdl-30655559

ABSTRACT

We recently demonstrated that the circadian clock component CRY2 is an essential cofactor in the SCFFBXL3-mediated ubiquitination of c-MYC. Because our demonstration that CRY2 recruits phosphorylated substrates to SCFFBXL3 was unexpected, we investigated the scope of this role by searching for additional substrates of FBXL3 that require CRY1 or CRY2 as cofactors. Here, we describe an affinity purification mass spectrometry (APMS) screen through which we identified more than one hundred potential substrates of SCFFBXL3+CRY1/2, including the cell cycle regulated Tousled-like kinase, TLK2. Both CRY1 and CRY2 recruit TLK2 to SCFFBXL3, and TLK2 kinase activity is required for this interaction. Overexpression or genetic deletion of CRY1 and/or CRY2 decreases or enhances TLK2 protein abundance, respectively. These findings reinforce the idea that CRYs function as co-factors for SCFFBXL3, provide a resource of potential substrates, and establish a molecular connection between the circadian and cell cycle oscillators via CRY-modulated turnover of TLK2.


Subject(s)
Cryptochromes/metabolism , Protein Serine-Threonine Kinases/metabolism , Ubiquitin-Protein Ligase Complexes/metabolism , Animals , Cells, Cultured , Circadian Clocks , Cryptochromes/genetics , F-Box Proteins/metabolism , Humans , Mice , Protein Serine-Threonine Kinases/drug effects , Stem Cell Factor/metabolism , Ubiquitin-Protein Ligases
8.
Front Immunol ; 9: 2804, 2018.
Article in English | MEDLINE | ID: mdl-30559743

ABSTRACT

Dendritic cell (DC) based cancer immunotherapy aims at the activation of the immune system, and in particular tumor-specific cytotoxic T lymphocytes (CTLs) to eradicate the tumor. DCs represent a heterogeneous cell population, including conventional DCs (cDCs), consisting of cDC1s, cDC2s, plasmacytoid DCs (pDCs), and monocyte-derived DCs (moDCs). These DC subsets differ both in ontogeny and functional properties, such as the capacity to induce CD4+ and CD8+ T-cell activation. MoDCs are most frequently used for vaccination purposes, based on technical aspects such as availability and in vitro expansion. However, whether moDCs are superior over other DC subsets in inducing anti-tumor immune responses, is unknown, and likely depends on tumor type and composition of the tumor microenvironment. In this review, we discuss cellular aspects essential for DC vaccination efficacy, and the most recent findings on different DC subsets that could be used for DC-based cancer immunotherapy. This can prove valuable for the future design of more effective DC vaccines by choosing different DC subsets, and sheds light on the working mechanism of DC immunotherapy.


Subject(s)
Antigen Presentation/immunology , Dendritic Cells/immunology , Animals , Cancer Vaccines/immunology , Humans , Immunotherapy/methods , Lymphocyte Activation/immunology , Monocytes/immunology , Neoplasms/immunology , Neoplasms/therapy , T-Lymphocytes, Cytotoxic/immunology , Tumor Microenvironment/immunology
9.
J Biol Rhythms ; 32(4): 345-358, 2017 08.
Article in English | MEDLINE | ID: mdl-28816632

ABSTRACT

Metformin is widely used in the treatment of type 2 diabetes to lower blood glucose. Although metformin is a relatively safe and effective drug, its clinical efficacy is variable and under certain circumstances it may contribute to life-threatening lactic acidosis. Thus, additional understanding of metformin pharmacokinetics and pharmacodynamics could provide important information regarding therapeutic use of this widely prescribed drug. Here we report a significant effect of time of day on acute blood glucose reduction in response to metformin administration and on blood lactate levels in healthy mice. Furthermore, we demonstrate that while metformin transport into hepatocytes is unaltered by time of day, the kinetics of metformin-induced activation of AMP-activated protein kinase (AMPK) in the liver are remarkably altered with circadian time. Liver-specific ablation of Bmal1 expression alters metformin induction of AMPK and blood glucose response but does not completely abolish time of day differences. Together, these data demonstrate that circadian rhythms affect the biological responses to metformin in a complex manner.


Subject(s)
Circadian Clocks/drug effects , Liver/drug effects , Liver/physiology , Metformin/administration & dosage , AMP-Activated Protein Kinases , Animals , Blood Glucose/drug effects , Circadian Rhythm/drug effects , Diabetes Mellitus, Type 2/drug therapy , Hepatocytes/drug effects , Hepatocytes/physiology , Lactates/blood , Male , Mice , Protein Serine-Threonine Kinases
10.
Proc Natl Acad Sci U S A ; 114(33): 8776-8781, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28751364

ABSTRACT

Nuclear hormone receptors (NRs) regulate physiology by sensing lipophilic ligands and adapting cellular transcription appropriately. A growing understanding of the impact of circadian clocks on mammalian transcription has sparked interest in the interregulation of transcriptional programs. Mammalian clocks are based on a transcriptional feedback loop featuring the transcriptional activators circadian locomotor output cycles kaput (CLOCK) and brain and muscle ARNT-like 1 (BMAL1), and transcriptional repressors cryptochrome (CRY) and period (PER). CRY1 and CRY2 bind independently of other core clock factors to many genomic sites, which are enriched for NR recognition motifs. Here we report that CRY1/2 serve as corepressors for many NRs, indicating a new facet of circadian control of NR-mediated regulation of metabolism and physiology, and specifically contribute to diurnal modulation of drug metabolism.


Subject(s)
CLOCK Proteins/metabolism , Circadian Rhythm/physiology , Cryptochromes/metabolism , Period Circadian Proteins/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Transcription, Genetic/physiology , ARNTL Transcription Factors/metabolism , Animals , Cell Line , Cell Line, Tumor , Circadian Clocks/physiology , Feedback, Physiological/physiology , Female , Gene Expression Regulation/physiology , HEK293 Cells , Hep G2 Cells , Humans , Male , Mice , Nuclear Proteins/metabolism , Trans-Activators/metabolism
11.
Cell Metab ; 26(1): 243-255.e6, 2017 Jul 05.
Article in English | MEDLINE | ID: mdl-28683290

ABSTRACT

Cellular metabolite balance and mitochondrial function are under circadian control, but the pathways connecting the molecular clock to these functions are unclear. Peroxisome proliferator-activated receptor delta (PPARδ) enables preferential utilization of lipids as fuel during exercise and is a major driver of exercise endurance. We show here that the circadian repressors CRY1 and CRY2 function as co-repressors for PPARδ. Cry1-/-;Cry2-/- myotubes and muscles exhibit elevated expression of PPARδ target genes, particularly in the context of exercise. Notably, CRY1/2 seem to repress a distinct subset of PPARδ target genes in muscle compared to the co-repressor NCOR1. In vivo, genetic disruption of Cry1 and Cry2 enhances sprint exercise performance in mice. Collectively, our data demonstrate that CRY1 and CRY2 modulate exercise physiology by altering the activity of several transcription factors, including CLOCK/BMAL1 and PPARδ, and thereby alter energy storage and substrate selection for energy production.


Subject(s)
Cryptochromes/metabolism , PPAR delta/metabolism , Physical Conditioning, Animal , Animals , Cells, Cultured , Cryptochromes/genetics , Gene Deletion , Gene Expression Regulation , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscles/physiology , Protein Interaction Maps
12.
Mol Cell ; 64(4): 774-789, 2016 11 17.
Article in English | MEDLINE | ID: mdl-27840026

ABSTRACT

For many years, a connection between circadian clocks and cancer has been postulated. Here we describe an unexpected function for the circadian repressor CRY2 as a component of an FBXL3-containing E3 ligase that recruits T58-phosphorylated c-MYC for ubiquitylation. c-MYC is a critical regulator of cell proliferation; T58 is central in a phosphodegron long recognized as a hotspot for mutation in cancer. This site is also targeted by FBXW7, although the full machinery responsible for its turnover has remained obscure. CRY1 cannot substitute for CRY2 in promoting c-MYC degradation. Their unique functions may explain prior conflicting reports that have fueled uncertainty about the relationship between clocks and cancer. We demonstrate that c-MYC is a target of CRY2-dependent protein turnover, suggesting a molecular mechanism for circadian control of cell growth and a new paradigm for circadian protein degradation.


Subject(s)
Cell Transformation, Neoplastic/genetics , Circadian Clocks/genetics , Cryptochromes/genetics , F-Box Proteins/genetics , Gene Expression Regulation, Neoplastic , Lymphoma/genetics , Proto-Oncogene Proteins c-myc/genetics , Animals , Carrier Proteins/chemistry , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Circadian Rhythm/genetics , Cryptochromes/chemistry , Cryptochromes/metabolism , Cullin Proteins/chemistry , Cullin Proteins/genetics , Cullin Proteins/metabolism , F-Box Proteins/chemistry , F-Box Proteins/metabolism , Fibroblasts , HEK293 Cells , Humans , Lymphoma/metabolism , Lymphoma/mortality , Lymphoma/pathology , Mice , Mice, Knockout , Models, Molecular , Protein Stability , Protein Structure, Secondary , Proteolysis , Proto-Oncogene Proteins c-myc/chemistry , Proto-Oncogene Proteins c-myc/metabolism , S-Phase Kinase-Associated Proteins/chemistry , S-Phase Kinase-Associated Proteins/genetics , S-Phase Kinase-Associated Proteins/metabolism , Signal Transduction , Survival Analysis
13.
Front Cell Neurosci ; 10: 290, 2016.
Article in English | MEDLINE | ID: mdl-28082870

ABSTRACT

Mutations within the FUS gene (Fused in Sarcoma) are known to cause Amyotrophic Lateral Sclerosis (ALS), a neurodegenerative disease affecting upper and lower motoneurons. The FUS gene codes for a multifunctional RNA/DNA-binding protein that is primarily localized in the nucleus and is involved in cellular processes such as splicing, translation, mRNA transport and DNA damage response. In this study, we analyzed pathophysiological alterations associated with ALS related FUS mutations (mFUS) in human induced pluripotent stem cells (hiPSCs) and hiPSC derived motoneurons. To that end, we compared cells carrying a mild or severe mFUS in physiological- and/or stress conditions as well as after induced DNA damage. Following hyperosmolar stress or irradiation, mFUS hiPS cells recruited significantly more cytoplasmatic FUS into stress granules accompanied by impaired DNA-damage repair. In motoneurons wild-type FUS was localized in the nucleus but also deposited as small punctae within neurites. In motoneurons expressing mFUS the protein was additionally detected in the cytoplasm and a significantly increased number of large, densely packed FUS positive stress granules were seen along neurites. The amount of FUS mislocalization correlated positively with both the onset of the human disease (the earlier the onset the higher the FUS mislocalization) and the maturation status of the motoneurons. Moreover, even in non-stressed post-mitotic mFUS motoneurons clear signs of DNA-damage could be detected. In summary, we found that the susceptibility to cell stress was higher in mFUS hiPSCs and hiPSC derived motoneurons than in controls and the degree of FUS mislocalization correlated well with the clinical severity of the underlying ALS related mFUS. The accumulation of DNA damage and the cellular response to DNA damage stressors was more pronounced in post-mitotic mFUS motoneurons than in dividing hiPSCs suggesting that mFUS motoneurons accumulate foci of DNA damage, which in turn might be directly linked to neurodegeneration.

14.
Elife ; 42015 Mar 10.
Article in English | MEDLINE | ID: mdl-25756610

ABSTRACT

The circadian transcriptional repressors cryptochrome 1 (Cry1) and 2 (Cry2) evolved from photolyases, bacterial light-activated DNA repair enzymes. In this study, we report that while they have lost DNA repair activity, Cry1/2 adapted to protect genomic integrity by responding to DNA damage through posttranslational modification and coordinating the downstream transcriptional response. We demonstrate that genotoxic stress stimulates Cry1 phosphorylation and its deubiquitination by Herpes virus associated ubiquitin-specific protease (Hausp, a.k.a Usp7), stabilizing Cry1 and shifting circadian clock time. DNA damage also increases Cry2 interaction with Fbxl3, destabilizing Cry2. Thus, genotoxic stress increases the Cry1/Cry2 ratio, suggesting distinct functions for Cry1 and Cry2 following DNA damage. Indeed, the transcriptional response to genotoxic stress is enhanced in Cry1-/- and blunted in Cry2-/- cells. Furthermore, Cry2-/- cells accumulate damaged DNA. These results suggest that Cry1 and Cry2, which evolved from DNA repair enzymes, protect genomic integrity via coordinated transcriptional regulation.


Subject(s)
Circadian Clocks/genetics , Cryptochromes/physiology , DNA Damage , Ubiquitin-Specific Proteases/physiology , Animals , Cell Line , Cryptochromes/metabolism , Mice , Phosphorylation , Protein Binding , Protein Stability , Transcription, Genetic , Ubiquitin-Specific Peptidase 7 , Ubiquitin-Specific Proteases/metabolism
15.
Clin Cancer Res ; 19(13): 3556-66, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23674497

ABSTRACT

PURPOSE: Multiple myeloma is a clonal plasma cell disorder in which growth and proliferation are linked to a variety of growth factors, including insulin-like growth factor type I (IGF-I). Bortezomib, the first-in-class proteasome inhibitor, has displayed significant antitumor activity in multiple myeloma. EXPERIMENTAL DESIGN: We analyzed the impact of IGF-I combined with proteasome inhibitors on multiple myeloma cell lines in vivo and in vitro as well as on fresh human myeloma cells. RESULTS: Our study shows that IGF-I enhances the cytotoxic effect of proteasome inhibitors against myeloma cells. The effect of bortezomib on the content of proapoptotic proteins such as Bax, Bad, Bak, and BimS and antiapoptotic proteins such as Bcl-2, Bcl-XL, XIAP, Bfl-1, and survivin was enhanced by IGF-I. The addition of IGF-I to bortezomib had a minor effect on NF-κB signaling in MM.1S cells while strongly enhancing reticulum stress. This resulted in an unfolded protein response (UPR), which was required for the potentiating effect of IGF-I on bortezomib cytotoxicity as shown by siRNA-mediated inhibition of GADD153 expression. CONCLUSIONS: These results suggest that the high baseline level of protein synthesis in myeloma can be exploited therapeutically by combining proteasome inhibitors with IGF-I, which possesses a "priming" effect on myeloma cells for this family of compounds.


Subject(s)
Drug Resistance, Neoplasm , Endoplasmic Reticulum Stress/drug effects , Insulin-Like Growth Factor I/pharmacology , Multiple Myeloma/metabolism , Proteasome Inhibitors/pharmacology , Animals , Apoptosis/drug effects , Boronic Acids/pharmacology , Bortezomib , Cell Cycle/drug effects , Cell Line, Tumor , Disease Models, Animal , Drug Synergism , Female , Humans , Insulin-Like Growth Factor I/administration & dosage , Insulin-Like Growth Factor I/toxicity , Multiple Myeloma/drug therapy , NF-kappa B/metabolism , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/administration & dosage , Proteasome Inhibitors/toxicity , Protein Biosynthesis/drug effects , Pyrazines/pharmacology , Signal Transduction/drug effects , Unfolded Protein Response/drug effects , Xenograft Model Antitumor Assays
16.
Mol Cell ; 49(6): 1049-59, 2013 Mar 28.
Article in English | MEDLINE | ID: mdl-23395000

ABSTRACT

As solid tumors expand, oxygen and nutrients become limiting owing to inadequate vascularization and diffusion. How malignant cells cope with this potentially lethal metabolic stress remains poorly understood. We found that glucose shortage associated with malignant progression triggers apoptosis through the endoplasmic reticulum (ER) unfolded protein response (UPR). ER stress is in part caused by reduced glucose flux through the hexosamine pathway. Deletion of the proapoptotic UPR effector CHOP in a mouse model of K-ras(G12V)-induced lung cancer increases tumor incidence, strongly supporting the notion that ER stress serves as a barrier to malignancy. Overcoming this barrier requires the selective attenuation of the PERK-CHOP arm of the UPR by the molecular chaperone p58(IPK). Furthermore, p58(IPK)-mediated adaptive response enables cells to benefit from the protective features of chronic UPR. Altogether, these results show that ER stress activation and p58(IPK) expression control the fate of malignant cells facing glucose shortage.


Subject(s)
Apoptosis , Cell Transformation, Neoplastic/metabolism , Glucose/deficiency , Molecular Chaperones/physiology , Transcription Factor CHOP/metabolism , eIF-2 Kinase/metabolism , Acetylgalactosamine/metabolism , Animals , Cell Hypoxia , Cell Line , Cell Proliferation , Glial Cell Line-Derived Neurotrophic Factor/physiology , Glucose Transporter Type 1/metabolism , Heat-Shock Proteins/metabolism , Humans , Lactic Acid/metabolism , Mice , Mice, Nude , Neoplasm Transplantation , Proto-Oncogene Proteins c-ret/metabolism , Rats , Unfolded Protein Response
17.
Phys Chem Chem Phys ; 14(2): 751-8, 2012 Jan 14.
Article in English | MEDLINE | ID: mdl-22116198

ABSTRACT

Mixed-conducting perovskite-type electrodes which are used as cathodes in solid oxide fuel cells (SOFCs) exhibit pronounced performance improvement after cathodic polarization. The current in situ study addresses the mechanism of this activation process which is still unknown. We chose the new perovskite-type material La(0.75)Sr(0.25)Cr(0.5)Mn(0.5)O(3±Î´) which is a potential candidate for use in symmetrical solid oxide fuel cells (SFCs). We prepared La(0.75)Sr(0.25)Cr(0.5)Mn(0.5)O(3±Î´) thin film model electrodes on YSZ (111) single crystals by pulsed laser deposition (PLD). Impedance spectroscopy (EIS) measurements show that the kinetics of these electrodes can be drastically improved by applying a cathodic potential. To understand the origin of the enhanced electrocatalytic activity the surfaces of operating LSCrM electrodes were studied in situ (at low pressure) with spatially resolving X-ray photoelectron spectroscopy (µ-ESCA, SPEM) and quasi static secondary ion mass spectrometry (ToF-SIMS) after applying different electrical potentials in the SIMS chamber. We observed that the electrode surfaces which were annealed at 600 °C are enriched significantly in strontium. Subsequent cathodic polarization decreases the strontium surface concentration while anodic polarization increases the strontium accumulation at the electrode surface. We propose a mechanism based on the reversible incorporation of a passivating SrO surface phase into the LSCrM lattice to explain the observed activation/deactivation process.

18.
PLoS One ; 5(6): e10977, 2010 Jun 08.
Article in English | MEDLINE | ID: mdl-20544018

ABSTRACT

BACKGROUND: Cellular cholesterol is a vital component of the cell membrane. Its concentration is tightly controlled by mechanisms that remain only partially characterized. In this study, we describe a late endosome/lysosomes-associated protein whose expression level affects cellular free cholesterol content. METHODOLOGY/PRINCIPAL FINDINGS: Using a restricted proteomic analysis of detergent-resistant membranes (DRMs), we have identified a protein encoded by gene C11orf59. It is mainly localized to late endosome/lysosome (LE/LY) compartment through N-terminal myristoylation and palmitoylation. We named it Pdro for protein associated with DRMs and endosomes. Very recently, three studies have reported on the same protein under two other names: the human p27RF-Rho that regulates RhoA activation and actin dynamics, and its rodent orthologue p18 that controls both LE/LY dynamics through the MERK-ERK pathway and the lysosomal activation of mammalian target of rapamycin complex 1 by amino acids. We found that, consistent with the presence of sterol-responsive element consensus sequences in the promoter region of C11orf59, Pdro mRNA and protein expression levels are regulated positively by cellular cholesterol depletion and negatively by cellular cholesterol loading. Conversely, Pdro is involved in the regulation of cholesterol homeostasis, since its depletion by siRNA increases cellular free cholesterol content that is accompanied by an increased cholesterol efflux from cells. On the other hand, cells stably overexpressing Pdro display reduced cellular free cholesterol content. Pdro depletion-mediated excess cholesterol results, at least in part, from a stimulated low-density lipoprotein (LDL) uptake and an increased cholesterol egress from LE/LY. CONCLUSIONS/SIGNIFICANCE: LDL-derived cholesterol release involves LE/LY motility that is linked to actin dynamics. Because Pdro regulates these two processes, we propose that modulation of Pdro expression in response to sterol levels regulates LDL-derived cholesterol through both LDL uptake and LE/LY dynamics, to ultimately control free cholesterol homeostasis.


Subject(s)
Carrier Proteins/metabolism , Cholesterol/metabolism , Endosomes/metabolism , Homeostasis , Lysosomes/metabolism , Amino Acid Sequence , Base Sequence , Biological Transport , Carrier Proteins/chemistry , Carrier Proteins/genetics , DNA Primers , Flow Cytometry , Fluorescent Antibody Technique , Gene Knockdown Techniques , Humans , Intracellular Signaling Peptides and Proteins , Lipoproteins, LDL/metabolism , Molecular Sequence Data , Reverse Transcriptase Polymerase Chain Reaction , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...