Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phytopathology ; 96(2): 130-6, 2006 Feb.
Article in English | MEDLINE | ID: mdl-18943915

ABSTRACT

ABSTRACT Manganese (Mn) oxidation by the plant-pathogenic fungus Gaeumannomyces graminis var. tritici has been correlated with virulence in take-all disease. The mechanism of Mn oxidation has not, however, been investigated adequately. Research on bacteria and other fungi indicates that Mn oxidation is most often the result of the activity of multicopper oxidases. To determine if G. graminis var. tritici oxidizes Mn by similar means, the Mn oxidizing factor (MOF) produced by G. graminis var. tritici was characterized by cultural, spectrophotometric, and cellulose acetate electrophoresis methods. Based on our results, the MOF is an extracellular enzyme with an estimated molecular weight of 50 to 100 kDa. Electrophoresis and spectrophotometry indicate that the MOF is a multicopper oxidase with laccase activity.

2.
Environ Microbiol ; 7(9): 1480-7, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16104870

ABSTRACT

Manganese chemistry in soils is a function of complex, competing biotic and abiotic reactions. The role of soil-borne fungi in mediating these reactions is poorly understood. The objective of this article is to document direct observation of fungal Mn oxidation in soil under near in situ conditions, and to isolate, describe and confirm the role of fungi in the observed Mn oxidation, and present a model to explain our observations. We incubated soil under different moisture contents in sample cells designed to allow us to use synchrotron microspectroscopic techniques to analyse areas as small as 38x40 microm2. Mn was redistributed and accumulated in distinct small circular shapes or in dendritic patterns near the air-soil interface when water-saturated soil was incubated for >or=7 days. Mn oxidation did not occur at 3 or 52 degrees C indicating that oxidation was caused by microbial activity. Mn-oxidizing fungi were isolated from the sample cells and cultured on agar. Reinoculation of sterile soil with the Mn-oxidizing isolates resulted in the formation of Mn oxides around fungal hyphae. A model to describe the distinct zonal distribution of Mn oxides in the sample cells is presented. We believe that our data are the first direct observation of Mn oxidation by soil-inhabiting fungi under in situ conditions. Mn-oxidizing fungi may play an underappreciated role in the cycling of Mn in soils.


Subject(s)
Fungi/isolation & purification , Magnesium/chemistry , Soil Microbiology , Soil/analysis , Fungi/growth & development , Oxidation-Reduction , Soil/standards , Spectrometry, X-Ray Emission , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...