Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Sci ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847963

ABSTRACT

Green leafy vegetables are essential for a balanced diet, providing vital nutrients for overall well-being. However, concerns arise due to contamination with toxic substances, such as arsenic, posing risks to food safety and human health. This study analyzes inorganic (iAs), monomethyl (MMA), and dimethyl arsenic (DMA) in specific leafy vegetables (Amaranthus tricolor L., Corchorus olitorius L., Cordia myxa L., Hibiscus sabdariffa L., Ipomoea batatas (L.) Lam., Moringa oleifera Lam., and Spinacia oleracea L.) grown in the heavily polluted Ambagarh Chouki region, Chhattisgarh, India. Concentrations of DMA, MMA, and iAs ranged from 0 to 155, 0 to 7, and 131 to 3579 mg·kg-1, respectively. The health quotient (HQ) for iAs ranged between 0.37 and 3.78, with an average value of 2.58 ± 1.08.

2.
Materials (Basel) ; 16(14)2023 Jul 08.
Article in English | MEDLINE | ID: mdl-37512169

ABSTRACT

Li-Ce-Ta (LCT) pegmatites containing lithium mineralization in the form of spodumene and lepidolite, as well as fuchsite, from the regions of northern Scandinavia (N Norway, N Finland, N Russia) were studied. Detailed analyses of the chemical compositions of these minerals were carried out, involving scanning electron microscopy (SEM) with energy-dispersive spectroscopy (EDS), Fourier transform infrared (FTIR) spectroscopy with attenuated total reflectance (ATR), and X-ray photoelectron spectroscopy (XPS) studies. Their crystal structures were confirmed with the X-ray diffraction technique. Studies involving microscopy were also carried out, indicating the optical features of these minerals. Based on the analyses carried out in the studied rocks, the characteristics of these minerals were determined, as well as the crystallization conditions. This research indicates that the N Scandinavian area is prospective and may lead to further discoveries of this type of pegmatite in the studied region.

3.
Sci Rep ; 12(1): 8846, 2022 05 25.
Article in English | MEDLINE | ID: mdl-35614182

ABSTRACT

Lake sediments not only store the long-term ecological information including pollen and microfossils but are also a source of sedimentary DNA (sedDNA). Here, by the combination of traditional multi-proxy paleolimnological methods with the whole-metagenome shotgun-sequencing of sedDNA we were able to paint a comprehensive picture of the fluctuations in trophy and bacterial diversity and metabolism of a small temperate lake in response to hemp retting, across the past 2000 years. Hemp retting (HR), a key step in hemp fibre production, was historically carried out in freshwater reservoirs and had a negative impact on the lake ecosystems. In Lake Slone, we identified two HR events, during the late stage of the Roman and Early Medieval periods and correlated these to the increased trophy and imbalanced lake microbiome. The metagenomic analyses showed a higher abundance of Chloroflexi, Planctomycetes and Bacteroidetes and a functional shift towards anaerobic metabolism, including degradation of complex biopolymers such as pectin and cellulose, during HR episodes. The lake eutrophication during HR was linked to the allochthonous, rather than autochthonous carbon supply-hemp straws. We also showed that the identification of HR based on the palynological analysis of hemp pollen may be inconclusive and we suggest the employment of the fibre count analysis as an additional and independent proxy.


Subject(s)
Cannabis , Microbiota , Cannabis/genetics , Geologic Sediments/microbiology , Lakes/microbiology , Metagenome , Microbiota/genetics
4.
Sci Rep ; 11(1): 10307, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33986391

ABSTRACT

Light-blue barite from Jebel Ouichane in Morocco forms blade-like tabular crystals (up to ca. 10 cm) with superb transparency and lustre and represents one of the most spectacular gem-quality worldwide. The barite is hosted by iron-ore-bearing skarns, developed within Jurassic-Cretaceous limestones, and occurs in close spatial association with calcite. The crystals have their cores enriched in Sr and contain abundant monophase (liquid) fluid inclusions of primary and pseudosecondary origin. The barite probably precipitated slowly at a relatively low supersaturation and under the control of a surface reaction precipitation mechanism. However, there were some episodes during its formation with a fast growth rate and the coupled dissolution and recrystallization processes. A combination of fluid inclusion data and stable δ18O value for barite (+ 6.71‰ VSMOW) suggests that low-salinity barite-forming solutions resulted from the mixing of strongly-diluted meteoric waters (enriched in light oxygen isotope) with magmatic-hydrothermal fluids under low-temperature conditions (< 100 °C). Meanwhile, the mineralizing fluids must have been enriched in Ba, Sr, Ca, Mg, and other elements derived from the alteration of carbonate and silicate minerals in sedimentary and igneous rocks. The coupling between sulphur and oxygen isotope data (+ 16.39‰ VCDT and + 6.71‰ VSMOW, respectively) further suggests that barite crystallized in steam-heated environment, where SO42- derived from magmatic-hydrothermal SO2 reacted with sulphates that originate from the oxidation of H2S under near-surface conditions.

5.
PLoS One ; 15(12): e0242980, 2020.
Article in English | MEDLINE | ID: mdl-33264340

ABSTRACT

The current laboratory adsorption study aimed at determination of the values of adsorption distribution coefficient (Kd) of bentazone in the profiles of Arenosols, Luvisols, and Cambisols, which are the most common arable mineral soils in Poland. The study attempted to identify the soil components that bind bentazone and the principal adsorption mechanisms of this compound as well as create a model capable of predicting its adsorption in soils. The Kd values determined in batch experiments after 24 h of shaking were very low, and ranged from 0.05 to 0.30 mL/g for the Ap horizon and 0 to 0.07 mL/g for subsoils. The results indicated that the anionic form of bentazone was adsorbed on organic matter, while in acidic soils the neutral form of bentazone was adsorbed on organic matter and sand. The detailed analyses of mineralogical composition revealed that the principal mineral that was responsible for the adsorption of bentazone was quartz, which content was strongly positively correlated with the sand fraction. In soils with pH < 5 and an organic carbon content of < 0.35%, quartz exhibited much greater affinity for the neutral bentazone form than organic matter. Fourier transform infrared photoacoustic spectroscopy analyses supported by computational methods have shown the most probable mechanisms behind the adsorption of bentazone on quartz. The created model, assuming the adsorption of bentazone on organic matter and on sand and using the spectrophotometrically determined dissociation constant of bentazone, very well explained the Kd variance in the 81 examined soils, while correctly predicting the adsorption based on soil properties described in the published data.


Subject(s)
Benzothiadiazines/chemistry , Minerals/analysis , Soil/chemistry , Adsorption , Hydrogen-Ion Concentration
SELECTION OF CITATIONS
SEARCH DETAIL
...