Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Leukemia ; 36(7): 1843-1849, 2022 07.
Article in English | MEDLINE | ID: mdl-35654819

ABSTRACT

Mutations of the JAK2 gene are frequent aberrations in the aging hematopoietic system and in myeloid neoplasms. While JAK-inhibitors efficiently reduce hyperinflammation induced by the constitutively active mutated JAK2 kinase, the malignant clone and abundance of mutated cells remains rather unaffected. Here, we sought to assess for genetic vulnerabilities of JAK2-mutated clones. We identified lysine-specific demethylase KDM4C as a selective genetic dependency that persists upon JAK-inhibitor treatment. Genetic inactivation of KDM4C in human and murine JAK2-mutated cells resulted in loss of cell competition and reduced proliferation. These findings led to reduced disease penetrance and improved survival in xenograft models of human JAK2-mutated cells. KDM4C deleted cells showed alterations in target histone residue methylation and target gene expression, resulting in induction of cellular senescence. In summary, these data establish KDM4C as a specific dependency and therapeutic target in JAK2-mutated cells that is essential for oncogenic signaling and prevents induction of senescence.


Subject(s)
Histone Demethylases , Neoplasms , Animals , Histone Demethylases/genetics , Histone Demethylases/metabolism , Humans , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Jumonji Domain-Containing Histone Demethylases/genetics , Jumonji Domain-Containing Histone Demethylases/metabolism , Methylation , Mice , Neoplasms/genetics , Signal Transduction
2.
Blood ; 139(7): 1080-1097, 2022 02 17.
Article in English | MEDLINE | ID: mdl-34695195

ABSTRACT

In an effort to identify novel drugs targeting fusion-oncogene-induced acute myeloid leukemia (AML), we performed high-resolution proteomic analysis. In AML1-ETO (AE)-driven AML, we uncovered a deregulation of phospholipase C (PLC) signaling. We identified PLCgamma 1 (PLCG1) as a specific target of the AE fusion protein that is induced after AE binding to intergenic regulatory DNA elements. Genetic inactivation of PLCG1 in murine and human AML inhibited AML1-ETO dependent self-renewal programs, leukemic proliferation, and leukemia maintenance in vivo. In contrast, PLCG1 was dispensable for normal hematopoietic stem and progenitor cell function. These findings are extended to and confirmed by pharmacologic perturbation of Ca++-signaling in AML1-ETO AML cells, indicating that the PLCG1 pathway poses an important therapeutic target for AML1-ETO+ leukemic stem cells.


Subject(s)
Core Binding Factor Alpha 2 Subunit/metabolism , Gene Expression Regulation, Leukemic , Hematopoietic Stem Cells/pathology , Leukemia, Myeloid, Acute/pathology , Neoplastic Stem Cells/pathology , Oncogene Proteins, Fusion/metabolism , Phospholipase C gamma/metabolism , RUNX1 Translocation Partner 1 Protein/metabolism , Animals , Cell Self Renewal , Core Binding Factor Alpha 2 Subunit/genetics , Hematopoietic Stem Cells/metabolism , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Mice , Neoplastic Stem Cells/metabolism , Oncogene Proteins, Fusion/genetics , Phospholipase C gamma/genetics , Proteome , RUNX1 Translocation Partner 1 Protein/genetics , Transcriptome , Translocation, Genetic
3.
Leukemia ; 36(2): 426-437, 2022 02.
Article in English | MEDLINE | ID: mdl-34465866

ABSTRACT

Persistence of malignant clones is a major determinant of adverse outcome in patients with hematologic malignancies. Despite the fact that the majority of patients with acute myeloid leukemia (AML) achieve complete remission after chemotherapy, a large proportion of them relapse as a result of residual malignant cells. These persistent clones have a competitive advantage and can re-establish disease. Therefore, targeting strategies that specifically diminish cell competition of malignant cells while leaving normal cells unaffected are clearly warranted. Recently, our group identified YBX1 as a mediator of disease persistence in JAK2-mutated myeloproliferative neoplasms. The role of YBX1 in AML, however, remained so far elusive. Here, inactivation of YBX1 confirms its role as an essential driver of leukemia development and maintenance. We identify its ability to amplify the translation of oncogenic transcripts, including MYC, by recruitment to polysomal chains. Genetic inactivation of YBX1 disrupts this regulatory circuit and displaces oncogenic drivers from polysomes, with subsequent depletion of protein levels. As a consequence, leukemia cells show reduced proliferation and are out-competed in vitro and in vivo, while normal cells remain largely unaffected. Collectively, these data establish YBX1 as a specific dependency and therapeutic target in AML that is essential for oncogenic protein expression.


Subject(s)
Biomarkers, Tumor/metabolism , Cell Competition , Janus Kinase 2/metabolism , Leukemia, Myeloid, Acute/pathology , Mutation , Proto-Oncogene Proteins c-myc/metabolism , Y-Box-Binding Protein 1/metabolism , Animals , Apoptosis , Biomarkers, Tumor/genetics , Cell Proliferation , Humans , Janus Kinase 2/genetics , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Mice , Prognosis , Proto-Oncogene Proteins c-myc/genetics , Tumor Cells, Cultured , Xenograft Model Antitumor Assays , Y-Box-Binding Protein 1/genetics
4.
Nature ; 588(7836): 157-163, 2020 12.
Article in English | MEDLINE | ID: mdl-33239784

ABSTRACT

Janus kinases (JAKs) mediate responses to cytokines, hormones and growth factors in haematopoietic cells1,2. The JAK gene JAK2 is frequently mutated in the ageing haematopoietic system3,4 and in haematopoietic cancers5. JAK2 mutations constitutively activate downstream signalling and are drivers of myeloproliferative neoplasm (MPN). In clinical use, JAK inhibitors have mixed effects on the overall disease burden of JAK2-mutated clones6,7, prompting us to investigate the mechanism underlying disease persistence. Here, by in-depth phosphoproteome profiling, we identify proteins involved in mRNA processing as targets of mutant JAK2. We found that inactivation of YBX1, a post-translationally modified target of JAK2, sensitizes cells that persist despite treatment with JAK inhibitors to apoptosis and results in RNA mis-splicing, enrichment for retained introns and disruption of the transcriptional control of extracellular signal-regulated kinase (ERK) signalling. In combination with pharmacological JAK inhibition, YBX1 inactivation induces apoptosis in JAK2-dependent mouse and primary human cells, causing regression of the malignant clones in vivo, and inducing molecular remission. This identifies and validates a cell-intrinsic mechanism whereby differential protein phosphorylation causes splicing-dependent alterations of JAK2-ERK signalling and the maintenance of JAK2V617F malignant clones. Therapeutic targeting of YBX1-dependent ERK signalling in combination with JAK2 inhibition could thus eradicate cells harbouring mutations in JAK2.


Subject(s)
Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Neoplasms/genetics , Neoplasms/pathology , Y-Box-Binding Protein 1/metabolism , Animals , Apoptosis/drug effects , Cell Line , Cells, Cultured , Clone Cells/metabolism , Clone Cells/pathology , Female , Heterografts , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Introns/genetics , Janus Kinase 2/antagonists & inhibitors , MAP Kinase Signaling System/drug effects , Male , Mice , Mutation , Neoplasm Transplantation , Neoplasms/drug therapy , Phosphoproteins/analysis , Phosphorylation , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Proteome/analysis , Proteomics , RNA Splicing/genetics , Remission Induction , Y-Box-Binding Protein 1/antagonists & inhibitors , Y-Box-Binding Protein 1/chemistry
5.
Front Physiol ; 8: 610, 2017.
Article in English | MEDLINE | ID: mdl-28878689

ABSTRACT

In the liver tumor necrosis factor (TNF)-induced signaling critically regulates the immune response of non-parenchymal cells as well as proliferation and apoptosis of hepatocytes via activation of the NF-κB and JNK pathways. Especially, the induction of negative feedback regulators, such as IκBα and A20 is responsible for the dynamic and time-restricted response of these important pathways. However, the precise mechanisms responsible for different TNF-induced phenotypes under physiological stimulation conditions are not completely understood so far. In addition, it is not known if varying TNF concentrations may differentially affect the desensitization properties of both pathways. By using computational modeling, we first showed that TNF-induced activation and downstream signaling is qualitatively comparable between primary mouse hepatocytes and immortalized hepatocellular carcinoma (HCC) cells. In order to define physiologically relevant TNF levels, which allow for an adjustable and dynamic NF-κB/JNK pathway response in parenchymal liver cells, a range of cytokine concentrations was defined that led to gradual pathway responses in HCC cells (1-5 ng/ml). Repeated stimulations with low (1 ng/ml), medium (2.5 ng/ml) and high (5 ng/ml) TNF amounts demonstrated that JNK signaling was still active at cytokine concentrations, which led to dampened NF-κB signaling illustrating differential pathway responsiveness depending on TNF input dynamics. SiRNA-mediated inhibition of the negative feedback regulator A20 (syn. TNFAIP3) or its overexpression did not significantly affect the NF-κB response. In contrast, A20 silencing increased the JNK response, while its overexpression dampened JNK phosphorylation. In addition, the A20 knockdown sensitized hepatocellular cells to TNF-induced cleavage and activity of the effector caspase-3. In conclusion, a mathematical model-based approach shows that the TNF-induced pathway responses are qualitatively comparable in primary and immortalized mouse hepatocytes. The cytokine amount defines the pathway responsiveness under repeated treatment conditions with NF-κB signaling being dampened 'earlier' than JNK. A20 appears to be the molecular switch discriminating between NF-κB and JNK signaling when stimulating with varying physiological cytokine concentrations.

6.
Mol Cell Proteomics ; 15(4): 1435-52, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26785728

ABSTRACT

PMM2-CDG, formerly known as congenital disorder of glycosylation-Ia (CDG-Ia), is caused by mutations in the gene encoding phosphomannomutase 2 (PMM2). This disease is the most frequent form of inherited CDG-diseases affecting protein N-glycosylation in human. PMM2-CDG is a multisystemic disease with severe psychomotor and mental retardation. In order to study the pathophysiology of PMM2-CDG in a human cell culture model, we generated induced pluripotent stem cells (iPSCs) from fibroblasts of a PMM2-CDG-patient (PMM2-iPSCs). Expression of pluripotency factors andin vitrodifferentiation into cell types of the three germ layers was unaffected in the analyzed clone PMM2-iPSC-C3 compared with nondiseased human pluripotent stem cells (hPSCs), revealing no broader influence of the PMM2 mutation on pluripotency in cell culture. Analysis of gene expression by deep-sequencing did not show obvious differences in the transcriptome between PMM2-iPSC-C3 and nondiseased hPSCs. By multiplexed capillary gel electrophoresis coupled to laser induced fluorescence detection (xCGE-LIF) we could show that PMM2-iPSC-C3 exhibit the common hPSC N-glycosylation pattern with high-mannose-type N-glycans as the predominant species. However, phosphomannomutase activity of PMM2-iPSC-C3 was 27% compared with control hPSCs and lectin staining revealed an overall reduced protein glycosylation. In addition, quantitative assessment of N-glycosylation by xCGE-LIF showed an up to 40% reduction of high-mannose-type N-glycans in PMM2-iPSC-C3, which was in concordance to the observed reduction of the Glc3Man9GlcNAc2 lipid-linked oligosaccharide compared with control hPSCs. Thus we could model the PMM2-CDG disease phenotype of hypoglycosylation with patient derived iPSCsin vitro Knock-down ofPMM2by shRNA in PMM2-iPSC-C3 led to a residual activity of 5% and to a further reduction of the level of N-glycosylation. Taken together we have developed human stem cell-based cell culture models with stepwise reduced levels of N-glycosylation now enabling to study the role of N-glycosylation during early human development.


Subject(s)
Congenital Disorders of Glycosylation/pathology , Glycomics/methods , Induced Pluripotent Stem Cells/metabolism , Models, Biological , Phosphotransferases (Phosphomutases)/deficiency , Cells, Cultured , Congenital Disorders of Glycosylation/metabolism , Gene Expression Profiling/methods , Glycosylation , High-Throughput Nucleotide Sequencing/methods , Humans , Induced Pluripotent Stem Cells/pathology , Phosphotransferases (Phosphomutases)/metabolism , Polysaccharides/metabolism
7.
Haematologica ; 100(10): 1267-74, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26206796

ABSTRACT

Aplastic anemia is a rare but life-threatening disorder characterized by cytopenia in at least two of the three blood lineages. A frequent feature of patients with aplastic anemia is that they have shorter telomeres than those of age-matched controls. Testosterone has been used for over half a century in the treatment of aplastic anemia. However, although remissions are frequent following hormone therapy, the molecular mechanism underlying the response to treatment has remained unknown. Here we explored the possibility that the recently described regulation of telomerase activity by sex hormones may be the mechanism responsible. To this end, we used a mouse model of aplastic anemia induced by short telomeres in the bone marrow compartment. We found that testosterone therapy results in telomerase up-regulation, improved blood counts, and a significant extension of life-span of these mice. Importantly, longitudinal follow-up studies revealed longer telomeres in peripheral blood in mice subjected to hormone treatment. Our results demonstrate that testosterone-mediated telomerase activation can attenuate or reverse aplastic anemia disease progression associated with the presence of short telomeres.


Subject(s)
Androgens/pharmacology , Anemia, Aplastic/genetics , Telomere Shortening , Androgens/administration & dosage , Anemia, Aplastic/blood , Anemia, Aplastic/drug therapy , Anemia, Aplastic/mortality , Animals , Bone Marrow Cells/drug effects , Bone Marrow Cells/metabolism , Disease Models, Animal , Estradiol/administration & dosage , Estradiol/pharmacology , Fibroblasts/drug effects , Fibroblasts/metabolism , Gene Expression , Humans , Mice , Mice, Transgenic , RNA, Messenger/genetics , Telomerase/genetics , Telomerase/metabolism , Testosterone/administration & dosage , Testosterone/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...