Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 2738, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38548739

ABSTRACT

The functionality of atomic quantum emitters is intrinsically linked to their host lattice coordination. Structural distortions that spontaneously break the lattice symmetry strongly impact their optical emission properties and spin-photon interface. Here we report on the direct imaging of charge state-dependent symmetry breaking of two prototypical atomic quantum emitters in mono- and bilayer MoS2 by scanning tunneling microscopy (STM) and non-contact atomic force microscopy (nc-AFM). By changing the built-in substrate chemical potential, different charge states of sulfur vacancies (VacS) and substitutional rhenium dopants (ReMo) can be stabilized. Vac S - 1 as well as Re Mo 0 and Re Mo - 1 exhibit local lattice distortions and symmetry-broken defect orbitals attributed to a Jahn-Teller effect (JTE) and pseudo-JTE, respectively. By mapping the electronic and geometric structure of single point defects, we disentangle the effects of spatial averaging, charge multistability, configurational dynamics, and external perturbations that often mask the presence of local symmetry breaking.

2.
ACS Photonics ; 10(11): 3888-3895, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38027247

ABSTRACT

The fundamental understanding of quantum dynamics in advanced materials requires precise characterization at the limit of spatiotemporal resolution. Ultrafast scanning tunneling microscopy is a powerful tool combining the benefits of picosecond time resolution provided by single-cycle terahertz (THz) pulses and atomic spatial resolution of a scanning tunneling microscope (STM). For the selective excitation of localized electronic states, the transient field profile must be tailored to the energetic structure of the system. Here, we present an advanced THz-STM setup combining multi-MHz repetition rates, strong THz near fields, and continuous carrier-envelope phase (CEP) control of the transient waveform. In particular, we employ frustrated total internal reflection as an efficient and cost-effective method for precise CEP control of single-cycle THz pulses with >60% field transmissivity, high pointing stability, and continuous phase shifting of up to 0.75 π in the far and near field. Efficient THz generation and dispersion management enable peak THz voltages at the tip-sample junction exceeding 20 V at 1 MHz and 1 V at 41 MHz. The system comprises two distinct THz generation arms, which facilitate individual pulse shaping and amplitude modulation. This unique feature enables the flexible implementation of various THz pump-probe schemes, thereby facilitating the study of electronic and excitonic excited-state propagation in nanostructures and low-dimensional materials systems. Scalability of the repetition rate up to 41 MHz, combined with a state-of-the-art low-temperature STM, paves the way toward the investigation of dynamical processes in atomic quantum systems at their native length and time scales.

3.
ACS Nano ; 17(16): 15629-15640, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37534591

ABSTRACT

Substitutionally doped 2D transition metal dichalcogenides are primed for next-generation device applications such as field effect transistors (FET), sensors, and optoelectronic circuits. In this work, we demonstrate substitutional rhenium (Re) doping of MoS2 monolayers with controllable concentrations down to 500 ppm by metal-organic chemical vapor deposition (MOCVD). Surprisingly, we discover that even trace amounts of Re lead to a reduction in sulfur site defect density by 5-10×. Ab initio models indicate the origin of the reduction is an increase in the free-energy of sulfur-vacancy formation at the MoS2 growth-front when Re is introduced. Defect photoluminescence (PL) commonly seen in undoped MOCVD MoS2 is suppressed by 6× at 0.05 atomic percent (at. %) Re and completely quenched with 1 at. % Re. Furthermore, we find that Re-MoS2 transistors exhibit a 2× increase in drain current and carrier mobility compared to undoped MoS2, indicating that sulfur vacancy reduction improves carrier transport in the Re-MoS2. This work provides important insights on how dopants affect 2D semiconductor growth dynamics, which can lead to improved crystal quality and device performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...