Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 6694, 2023 10 23.
Article in English | MEDLINE | ID: mdl-37872138

ABSTRACT

We report on the existence of two phosphatidic acid biosynthetic pathways in mycobacteria, a classical one wherein the acylation of the sn-1 position of glycerol-3-phosphate (G3P) precedes that of sn-2 and another wherein acylations proceed in the reverse order. Two unique acyltransferases, PlsM and PlsB2, participate in both pathways and hold the key to the unusual positional distribution of acyl chains typifying mycobacterial glycerolipids wherein unsaturated substituents principally esterify position sn-1 and palmitoyl principally occupies position sn-2. While PlsM selectively transfers a palmitoyl chain to the sn-2 position of G3P and sn-1-lysophosphatidic acid (LPA), PlsB2 preferentially transfers a stearoyl or oleoyl chain to the sn-1 position of G3P and an oleyl chain to sn-2-LPA. PlsM is the first example of an sn-2 G3P acyltransferase outside the plant kingdom and PlsB2 the first example of a 2-acyl-G3P acyltransferase. Both enzymes are unique in their ability to catalyze acyl transfer to both G3P and LPA.


Subject(s)
Acyltransferases , Mycobacterium , Acyltransferases/genetics , Acyltransferases/metabolism , Glycerol-3-Phosphate O-Acyltransferase/genetics , Glycerol-3-Phosphate O-Acyltransferase/metabolism , Acylation , Mycobacterium/genetics , Mycobacterium/metabolism
2.
Front Immunol ; 13: 897873, 2022.
Article in English | MEDLINE | ID: mdl-35874748

ABSTRACT

CD1d is an atypical MHC class I molecule which binds endogenous and exogenous lipids and can activate natural killer T (NKT) cells through the presentation of lipid antigens. CD1d surveys different cellular compartments including the secretory and the endolysosomal pathway and broadly binds lipids through its two hydrophobic pockets. Purification of the transmembrane protein CD1d for the analysis of bound lipids is technically challenging as the use of detergents releases CD1d-bound lipids. To address these challenges, we have developed a novel approach based on Sortase A-dependent enzymatic release of CD1d at the cell surface of live mammalian cells, which allows for single step release and affinity tagging of CD1d for shotgun lipidomics. Using this system, we demonstrate that CD1d carrying the Sortase A recognition motif shows unimpaired subcellular trafficking through the secretory and endolysosomal pathway and is able to load lipids in these compartments and present them to NKT cells. Comprehensive shotgun lipidomics demonstrated that the spectrum and abundance of CD1d-associated lipids is not representative of the total cellular lipidome but rather characterized by preferential binding to long chain sphingolipids and glycerophospholipids. As such, sphingomyelin species recently identified as critical negative regulators of NKT cell activation, represented the vast majority of endogenous CD1d-associated lipids. Moreover, we observed that inhibition of endolysosomal trafficking of CD1d surprisingly did not affect the spectrum of CD1d-bound lipids, suggesting that the majority of endogenous CD1d-associated lipids load onto CD1d in the secretory rather than the endolysosomal pathway. In conclusion, we present a novel system for the analysis of CD1d-bound lipids in mammalian cells and provide new insight into the spectrum of CD1d-associated lipids, with important functional implications for NKT cell activation.


Subject(s)
Aminoacyltransferases , Sphingomyelins , Animals , Antigens, CD1d/metabolism , Bacterial Proteins , Cysteine Endopeptidases , Mammals
3.
Br J Pharmacol ; 178(16): 3248-3260, 2021 08.
Article in English | MEDLINE | ID: mdl-32696532

ABSTRACT

Metabolic pathways have emerged as cornerstones in carcinogenic deregulation providing new therapeutic strategies for cancer management. Recently, a new branch of cholesterol metabolism has been discovered involving the biochemical transformation of 5,6-epoxycholesterols (5,6-ECs). The 5,6-ECs are metabolized in breast cancers to the tumour promoter oncosterone whereas, in normal breast tissue, they are metabolized to the tumour suppressor metabolite, dendrogenin A (DDA). Blocking the mitogenic and invasive potential of oncosterone will present new opportunities for breast cancer treatment. The reactivation of DDA biosynthesis, or its use as a drug, represents promising therapeutic approaches such as DDA-deficiency complementation, activation of breast cancer cell re-differentiation and breast cancer chemoprevention. This review presents current knowledge of the 5,6-EC metabolic pathway in breast cancer, focusing on the 5,6-EC metabolic enzymes ChEH and HSD11B2 and on 5,6-EC metabolite targets, the oxysterol receptor (LXRß) and the glucocorticoid receptor. LINKED ARTICLES: This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.


Subject(s)
Breast Neoplasms , Breast Neoplasms/drug therapy , Cell Proliferation , Cholesterol/analogs & derivatives , Female , Humans , Metabolic Networks and Pathways
4.
J Steroid Biochem Mol Biol ; 194: 105447, 2019 11.
Article in English | MEDLINE | ID: mdl-31415823

ABSTRACT

Dendrogenin A (DDA) is a newly-discovered steroidal alkaloid, which remains to date the first ever found in mammals. DDA is a cholesterol metabolites that induces cancer cell differentiation and death in vitro and in vivo, and thus behave like a tumor suppressor metabolite. Preliminary studies performed on 10 patients with estrogen receptor positive breast cancers (ER(+)BC) showed a strong decrease in DDA levels between normal matched tissue and tumors. This suggests that a deregulation on DDA metabolism is associated with breast carcinogenesis. To further investigate DDA metabolism on large cohorts of patients we have developed an ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS) procedure for the quantification of DDA in liquid and in solid tissues. This method enabled the identification of DDA analogues such as its geometric isomer C17 and dendrogenin B (C26) in human samples showing that other 5,6α-epoxycholesterol conjugation products with biogenic amines exist as endogenous metabolites . We report here the first complete method of quantification of DDA in liquid and solid tissues using hydrophilic interaction liquid chromatography (HILIC). Two different methods of extraction using either a Bligh and Dyer organic extraction or protein precipitation were successfully applied to quantify DDA in solid and liquid tissues. The protein precipitation method was the fastest. The fact that this method is automatable opens up possibilities to study DDA metabolism in large cohorts of patients.


Subject(s)
Cholestanols/analysis , Imidazoles/analysis , Breast/metabolism , Breast Neoplasms/metabolism , Cholestanols/metabolism , Chromatography, Liquid/methods , Female , Humans , Imidazoles/metabolism
5.
Proc Natl Acad Sci U S A ; 114(44): E9346-E9355, 2017 10 31.
Article in English | MEDLINE | ID: mdl-29078321

ABSTRACT

Breast cancer (BC) remains the primary cause of death from cancer among women worldwide. Cholesterol-5,6-epoxide (5,6-EC) metabolism is deregulated in BC but the molecular origin of this is unknown. Here, we have identified an oncometabolism downstream of 5,6-EC that promotes BC progression independently of estrogen receptor α expression. We show that cholesterol epoxide hydrolase (ChEH) metabolizes 5,6-EC into cholestane-3ß,5α,6ß-triol, which is transformed into the oncometabolite 6-oxo-cholestan-3ß,5α-diol (OCDO) by 11ß-hydroxysteroid-dehydrogenase-type-2 (11ßHSD2). 11ßHSD2 is known to regulate glucocorticoid metabolism by converting active cortisol into inactive cortisone. ChEH inhibition and 11ßHSD2 silencing inhibited OCDO production and tumor growth. Patient BC samples showed significant increased OCDO levels and greater ChEH and 11ßHSD2 protein expression compared with normal tissues. The analysis of several human BC mRNA databases indicated that 11ßHSD2 and ChEH overexpression correlated with a higher risk of patient death, highlighting that the biosynthetic pathway producing OCDO is of major importance to BC pathology. OCDO stimulates BC cell growth by binding to the glucocorticoid receptor (GR), the nuclear receptor of endogenous cortisol. Interestingly, high GR expression or activation correlates with poor therapeutic response or prognosis in many solid tumors, including BC. Targeting the enzymes involved in cholesterol epoxide and glucocorticoid metabolism or GR may be novel strategies to prevent and treat BC.


Subject(s)
Breast Neoplasms/metabolism , Carcinogens/metabolism , Cholesterol/metabolism , Receptors, Glucocorticoid/metabolism , 11-beta-Hydroxysteroid Dehydrogenase Type 2/metabolism , Animals , Cell Line , Cell Line, Tumor , Cholesterol/analogs & derivatives , Epoxide Hydrolases/metabolism , Estrogen Receptor alpha/metabolism , Female , HEK293 Cells , Humans , MCF-7 Cells , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Nude , RNA, Messenger/metabolism
6.
Chem Phys Lipids ; 207(Pt B): 81-86, 2017 10.
Article in English | MEDLINE | ID: mdl-28684089

ABSTRACT

Dendrogenin A (DDA) was recently identified as a mammalian cholesterol metabolite that displays tumor suppressor and neurostimulating properties at low doses. In breast tumors, DDA levels were found to be decreased compared to normal tissues, evidencing a metabolic deregulation of DDA production in cancers. DDA is an amino-oxysterol that contains three protonatable nitrogen atoms. This makes it physico-chemically different from other oxysterols and it therefore requires specific analytical methods We have previously used a two-step method for the quantification of DDA in biological samples: 1) DDA purification from a Bligh and Dyer extract by RP-HPLC using a 250×4.6mm column, followed by 2) nano-electrospray ionization mass spectrometry (MS) fragmentation to analyze the HPLC fraction of interest. We report here the development a liquid chromatography tandem mass spectrometry method for the analysis of DDA and its analogues. This new method is fast (10min), resolving (peak width <4s) and has a weak carryover (<0.01%). We show that this technique efficiently separates DDA from its C17 isomer and other steroidal alkaloids from the same family establishing a proof of concept for the analysis of this family of amino-oxysterols.


Subject(s)
Breast Neoplasms/metabolism , Cholestanols/analysis , Cholestanols/chemistry , Imidazoles/analysis , Imidazoles/chemistry , Breast Neoplasms/chemistry , Cholestanols/isolation & purification , Chromatography, High Pressure Liquid , Female , Humans , Hydrogen-Ion Concentration , Imidazoles/isolation & purification , Molecular Conformation , Tandem Mass Spectrometry
7.
PLoS One ; 12(2): e0171955, 2017.
Article in English | MEDLINE | ID: mdl-28199365

ABSTRACT

Protein mycoloylation is a recently identified, new form of protein acylation. This post-translational modification consists in the covalent attachment of mycolic acids residues to serine. Mycolic acids are long chain, α-branched, ß-hydroxylated fatty acids that are exclusively found in the cell envelope of Corynebacteriales, a bacterial order that includes important genera such as Mycobacterium, Nocardia or Corynebacterium. So far, only 3 mycoloylated proteins have been identified: PorA, PorH and ProtX from C. glutamicum. Whereas the identity and function of ProtX is unknown, PorH and PorA associate to form a membrane channel, the activity of which is dependent upon PorA mycoloylation. However, the exact role of mycoloylation and the generality of this phenomenon are still unknown. In particular, the identity of other mycoloylated proteins, if any, needs to be determined together with establishing whether such modification occurs in Corynebacteriales genera other than Corynebacterium. Here, we tested whether a metabolic labeling and click-chemistry approach could be used to detect mycoloylated proteins. Using a fatty acid alkyne analogue, we could indeed label PorA, PorH and ProtX and determine ProtX mycoloylation site. Importantly, we also show that two other porins from C. glutamicum, PorB and PorC are mycoloylated.


Subject(s)
Bacterial Proteins/metabolism , Corynebacterium glutamicum/metabolism , Mycolic Acids/metabolism , Porins/metabolism , Bacterial Proteins/analysis , Bacterial Proteins/genetics , Click Chemistry , Fatty Acids/chemistry , Plasmids/genetics , Plasmids/metabolism , Porins/analysis , Porins/genetics , Protein Processing, Post-Translational , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
8.
J Biol Chem ; 291(36): 18867-79, 2016 09 02.
Article in English | MEDLINE | ID: mdl-27417139

ABSTRACT

The unique cell wall of mycobacteria is essential to their viability and the target of many clinically used anti-tuberculosis drugs and inhibitors under development. Despite intensive efforts to identify the ligase(s) responsible for the covalent attachment of the two major heteropolysaccharides of the mycobacterial cell wall, arabinogalactan (AG) and peptidoglycan (PG), the enzyme or enzymes responsible have remained elusive. We here report on the identification of the two enzymes of Mycobacterium tuberculosis, CpsA1 (Rv3267) and CpsA2 (Rv3484), responsible for this function. CpsA1 and CpsA2 belong to the widespread LytR-Cps2A-Psr (LCP) family of enzymes that has been shown to catalyze a variety of glycopolymer transfer reactions in Gram-positive bacteria, including the attachment of wall teichoic acids to PG. Although individual cpsA1 and cpsA2 knock-outs of M. tuberculosis were readily obtained, the combined inactivation of both genes appears to be lethal. In the closely related microorganism Corynebacterium glutamicum, the ortholog of cpsA1 is the only gene involved in this function, and its conditional knockdown leads to dramatic changes in the cell wall composition and morphology of the bacteria due to extensive shedding of cell wall material in the culture medium as a result of defective attachment of AG to PG. This work marks an important step in our understanding of the biogenesis of the unique cell envelope of mycobacteria and opens new opportunities for drug development.


Subject(s)
Bacterial Proteins/genetics , Cell Wall/metabolism , Galactans/metabolism , Mycobacterium tuberculosis/metabolism , Peptidoglycan/metabolism , Teichoic Acids/metabolism , Bacterial Proteins/metabolism , Cell Wall/genetics , Corynebacterium glutamicum/genetics , Corynebacterium glutamicum/metabolism , Galactans/genetics , Mycobacterium tuberculosis/genetics , Peptidoglycan/genetics , Teichoic Acids/genetics
9.
Gut ; 64(12): 1889-97, 2015 Dec.
Article in English | MEDLINE | ID: mdl-25367873

ABSTRACT

OBJECTIVE: IBD is a group of complex, systemic disorders associated with intestinal inflammation and extraintestinal manifestations. Recent studies revealed Mendelian forms of IBD, which contributed significantly to our understanding of disease pathogenesis and the heritability of IBD. DESIGN: We performed exome sequencing in a family with Crohn's disease (CD) and severe autoimmunity, analysed immune cell phenotype and function in affected and non-affected individuals, and performed in silico and in vitro analyses of cytotoxic T lymphocyte-associated protein 4 (CTLA-4) structure and function. RESULTS: A novel missense variant was identified in CTLA4 encoding CTLA-4, a coinhibitory protein expressed by T cells and required for regulation of T cell activation. The residue affected by the mutation, CTLA-4 Tyr60, is evolutionarily highly conserved, and the identified Y60C variant is predicted to affect protein folding and structural stability and demonstrated to cause impaired CTLA-4 dimerisation and CD80 binding. Intestinal inflammation and autoimmunity in carriers of CTLA-4 Y60C exhibit incomplete penetrance with a spectrum of clinical presentations ranging from asymptomatic carrier status to fatal autoimmunity and intestinal inflammation. In a clinically affected CTLA-4 Y60C carrier, T cell proliferation was increased in vitro and associated with an increased ratio of memory to naive T cells in vivo, consistent with impaired regulation of T cell activation. CONCLUSIONS: Our results support the concept that variants in CTLA4 provide the basis for a novel Mendelian form of early-onset CD associated with systemic autoimmunity. Incomplete penetrance of autoimmunity further indicates the presence of other genetic and/or environmental modifiers.


Subject(s)
Autoimmune Diseases/genetics , Autoimmunity/genetics , CTLA-4 Antigen/genetics , Crohn Disease/genetics , Crohn Disease/immunology , T-Lymphocytes, Cytotoxic/metabolism , Adolescent , Age of Onset , Autoimmune Diseases/immunology , B7-1 Antigen/metabolism , CD4 Lymphocyte Count , CTLA-4 Antigen/metabolism , Cell Proliferation/genetics , Child , DNA Mutational Analysis , Diabetes Mellitus, Type 1/complications , Dimerization , Exome , Female , HEK293 Cells , Heterozygote , Humans , Immunologic Memory/genetics , Mutation, Missense , Pedigree , Penetrance , Protein Multimerization/genetics , Sequence Analysis, DNA , Young Adult
10.
Crit Rev Biochem Mol Biol ; 49(5): 361-99, 2014.
Article in English | MEDLINE | ID: mdl-24915502

ABSTRACT

Tuberculosis (TB) remains the second most common cause of death due to a single infectious agent. The cell envelope of Mycobacterium tuberculosis (Mtb), the causative agent of the disease in humans, is a source of unique glycoconjugates and the most distinctive feature of the biology of this organism. It is the basis of much of Mtb pathogenesis and one of the major causes of its intrinsic resistance to chemotherapeutic agents. At the same time, the unique structures of Mtb cell envelope glycoconjugates, their antigenicity and essentiality for mycobacterial growth provide opportunities for drug, vaccine, diagnostic and biomarker development, as clearly illustrated by recent advances in all of these translational aspects. This review focuses on our current understanding of the structure and biogenesis of Mtb glycoconjugates with particular emphasis on one of the most intriguing and least understood aspect of the physiology of mycobacteria: the translocation of these complex macromolecules across the different layers of the cell envelope. It further reviews the rather impressive progress made in the last 10 years in the discovery and development of novel inhibitors targeting their biogenesis.


Subject(s)
Cell Membrane/metabolism , Glycoconjugates/metabolism , Mycobacterium tuberculosis/metabolism , Bacterial Capsules/chemistry , Bacterial Capsules/metabolism , Glycoconjugates/chemistry , Glycoproteins/metabolism , Humans , Models, Biological
11.
Microbiologyopen ; 3(4): 484-96, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24942069

ABSTRACT

Corynebacterium-Mycobacterium-Nocardia (CMN) group are the causative agents of a broad spectrum of diseases in humans. A distinctive feature of these Gram-positive bacteria is the presence of an outer membrane of unique structure and composition. Recently, resistance-nodulation-division (RND) transporters (nicknamed MmpLs, Mycobacterial membrane protein Large) have emerged as major contributors to the biogenesis of the outer membranes in mycobacteria and as promising drug targets. In this study, we investigated the role of RND transporters in the physiology of Corynebacterium glutamicum and analyzed properties of these proteins. Our results show that in contrast to Gram-negative species, in which RND transporters actively extrude antibiotics from cells, in C. glutamicum and relatives these transporters protect cells from antibiotics by playing essential roles in the biogenesis of the low-permeability barrier of the outer membrane. Conditional C. glutamicum mutants lacking RND proteins and with the controlled expression of either NCgl2769 (CmpL1) or NCgl0228 (CmpL4) are hypersusceptible to multiple antibiotics, have growth deficiencies in minimal medium and accumulate intracellularly trehalose monocorynomycolates, free corynomycolates, and the previously uncharacterized corynomycolate-containing lipid. Our results also suggest that similar to other RND transporters, Corynebacterial membrane proteins Large (CmpLs) functions are dependent on a proton-motive force.


Subject(s)
Anti-Bacterial Agents/metabolism , Bacterial Proteins/metabolism , Corynebacterium glutamicum/drug effects , Corynebacterium glutamicum/metabolism , Drug Resistance, Bacterial , Membrane Transport Proteins/metabolism , Bacterial Proteins/genetics , Corynebacterium glutamicum/genetics , Corynebacterium glutamicum/growth & development , Culture Media/chemistry , Gene Knockdown Techniques , Genes, Bacterial , Genes, Essential , Membrane Transport Proteins/genetics , Proton-Motive Force
SELECTION OF CITATIONS
SEARCH DETAIL
...