Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38542334

ABSTRACT

The BMP pathway is one of the major signaling pathways in embryonic development, ontogeny and homeostasis, identified many years ago by pioneers in developmental biology. Evidence of the deregulation of its activity has also emerged in many cancers, with complex and sometimes opposing effects. Recently, its role has been suspected in Diffuse Midline Gliomas (DMG), among which Diffuse Intrinsic Pontine Gliomas (DIPG) are one of the most complex challenges in pediatric oncology. Genomic sequencing has led to understanding part of their molecular etiology, with the identification of histone H3 mutations in a large proportion of patients. The epigenetic remodeling associated with these genetic alterations has also been precisely described, creating a permissive context for oncogenic transcriptional program activation. This review aims to describe the new findings about the involvement of BMP pathway activation in these tumors, placing their appearance in a developmental context. Targeting the oncogenic synergy resulting from this pathway activation in an H3K27M context could offer new therapeutic perspectives based on targeting treatment-resistant cell states.


Subject(s)
Diffuse Intrinsic Pontine Glioma , Glioma , Humans , Child , Glioma/metabolism , Histones/metabolism , Diffuse Intrinsic Pontine Glioma/genetics , Diffuse Intrinsic Pontine Glioma/metabolism , Diffuse Intrinsic Pontine Glioma/pathology , Mutation , Signal Transduction , Bone Morphogenetic Proteins/metabolism
2.
Cell Rep Med ; 4(12): 101339, 2023 12 19.
Article in English | MEDLINE | ID: mdl-38118405

ABSTRACT

Rhabdomyosarcoma (RMS) is the main form of pediatric soft-tissue sarcoma. Its cure rate has not notably improved in the last 20 years following relapse, and the lack of reliable preclinical models has hampered the design of new therapies. This is particularly true for highly heterogeneous fusion-negative RMS (FNRMS). Although methods have been proposed to establish FNRMS organoids, their efficiency remains limited to date, both in terms of derivation rate and ability to accurately mimic the original tumor. Here, we present the development of a next-generation 3D organoid model derived from relapsed adult and pediatric FNRMS. This model preserves the molecular features of the patients' tumors and is expandable for several months in 3D, reinforcing its interest to drug combination screening with longitudinal efficacy monitoring. As a proof-of-concept, we demonstrate its preclinical relevance by reevaluating the therapeutic opportunities of targeting apoptosis in FNRMS from a streamlined approach based on transcriptomic data exploitation.


Subject(s)
Antineoplastic Agents , Rhabdomyosarcoma , Adult , Humans , Child , Neoplasm Recurrence, Local/drug therapy , Rhabdomyosarcoma/drug therapy , Rhabdomyosarcoma/pathology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Organoids/pathology , Cell Death
3.
Chem Sci ; 14(29): 7988-7998, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37502321

ABSTRACT

Brain tumors are an important cause of suffering and death. Glioblastoma are the most frequent primary tumors of the central nervous system in adults. They are associated with a very poor prognosis, since only 10% of GBM patients survive 5 years after diagnosis. Medulloblastoma are the most frequent brain malignancies in childhood; they affect the cerebellum in children under 10 years of age in 75% of cases. The current multimodal treatment comes at the expense of serious and often long-lasting side effects. Herein, we propose the synthesis of a library of novel alkoxyamines as anticancer drug candidates. The most efficient molecule, ALK4, was selected based on its ability to inhibit both survival and migration of GBM and MB cells in 2D cultures and in 3D tumor spheroids. A fluorescent derivative was used to show the early cytosolic accumulation of ALK4 in tumor cells. Spontaneous homolysis of ALK4 led to the release of alkyl radicals, which triggered the generation of reactive oxygen species, fragmentation of the mitochondrial network and ultimately apoptosis. To control its homolytic process, the selected alkoxyamine was bioconjugated to a peptide selectively recognized by matrix metalloproteases. This bioconjugate, named ALK4-MMPp, successfully inhibited survival, proliferation, and invasion of GBM and MB tumor micromasses. We further developed innovative brain and cerebellum organotypic models to monitor treatment response over time. It confirmed that ALK4-MMPp significantly impaired tumor progression, while no significant damage was observed on normal brain tissue. Lastly, we showed that ALK4-MMPp was well-tolerated in vivo by zebrafish embryos. This study provides a new strategy to control the activation of alkoxyamines, and revealed the bioconjugate ALK4-MMPp bioconjugate as a good anticancer drug candidate.

4.
Commun Biol ; 5(1): 1068, 2022 10 07.
Article in English | MEDLINE | ID: mdl-36207615

ABSTRACT

TGF-ß signaling is involved in pancreatic ductal adenocarcinoma (PDAC) tumorigenesis, representing one of the four major pathways genetically altered in 100% of PDAC cases. TGF-ß exerts complex and pleiotropic effects in cancers, notably via the activation of SMAD pathways, predominantly SMAD2/3/4. Though SMAD2 and 3 are rarely mutated in cancers, SMAD4 is lost in about 50% of PDAC, and the role of SMAD2/3 in a SMAD4-null context remains understudied. We herein provide evidence of a SMAD2/3 oncogenic effect in response to TGF-ß1 in SMAD4-null human PDAC cancer cells. We report that inactivation of SMAD2/3 in SMAD4-negative PDAC cells compromises TGF-ß-driven collective migration mediated by FAK and Rho/Rac signaling. Moreover, RNA-sequencing analyses highlight a TGF-ß gene signature related to aggressiveness mediated by SMAD2/3 in the absence of SMAD4. Using a PDAC patient cohort, we reveal that SMAD4-negative tumors with high levels of phospho-SMAD2 are more aggressive and have a poorer prognosis. Thus, loss of SMAD4 tumor suppressive activity in PDAC leads to an oncogenic gain-of-function of SMAD2/3, and to the onset of associated deleterious effects.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Smad3 Protein/metabolism , Carcinogenesis/genetics , Carcinoma, Pancreatic Ductal/metabolism , Humans , Pancreatic Neoplasms/metabolism , RNA , Smad2 Protein/genetics , Smad2 Protein/metabolism , Smad4 Protein/genetics , Smad4 Protein/metabolism , Transforming Growth Factor beta/pharmacology , Transforming Growth Factor beta1/metabolism , Pancreatic Neoplasms
5.
Biomedicines ; 10(6)2022 Jun 03.
Article in English | MEDLINE | ID: mdl-35740334

ABSTRACT

Pediatric high-grade gliomas (pHGGs) are a deadly and heterogenous subgroup of gliomas for which the development of innovative treatments is urgent. Advances in high-throughput molecular techniques have shed light on key epigenetic components of these diseases, such as K27M and G34R/V mutations on histone 3. However, modification of DNA compaction is not sufficient by itself to drive those tumors. Here, we review molecular specificities of pHGGs subcategories in the context of epigenomic rewiring caused by H3 mutations and the subsequent oncogenic interplay with transcriptional signaling pathways co-opted from developmental programs that ultimately leads to gliomagenesis. Understanding how transcriptional and epigenetic alterations synergize in each cellular context in these tumors could allow the identification of new Achilles' heels, thereby highlighting new levers to improve their therapeutic management.

6.
Cancers (Basel) ; 13(21)2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34771714

ABSTRACT

High-grade gliomas represent the most lethal class of pediatric tumors, and their resistance to both radio- and chemotherapy is associated with a poor prognosis. Recurrent mutations affecting histone genes drive the tumorigenesis of some pediatric high-grade gliomas, and H3K27M mutations are notably characteristic of a subtype of gliomas called DMG (Diffuse Midline Gliomas). This dominant negative mutation impairs H3K27 trimethylation, leading to profound epigenetic modifications of genes expression. Even though this mutation was described as a driver event in tumorigenesis, its role in tumor cell resistance to treatments has not been deciphered so far. To tackle this issue, we expressed the H3.3K27M mutated histone in three initially H3K27-unmutated pediatric glioma cell lines, Res259, SF188, and KNS42. First, we validated these new H3.3K27M-expressing models at the molecular level and showed that K27M expression is associated with pleiotropic effects on the transcriptomic signature, largely dependent on cell context. We observed that the mutation triggered an increase in cell growth in Res259 and SF188 cells, associated with higher clonogenic capacities. Interestingly, we evidenced that the mutation confers an increased resistance to ionizing radiations in Res259 and KNS42 cells. Moreover, we showed that H3.3K27M mutation impacts the sensitivity of Res259 cells to specific drugs among a library of 80 anticancerous compounds. Altogether, these data highlight that, beyond its tumorigenic role, H3.3K27M mutation is strongly involved in pediatric glioma cells' resistance to therapies, likely through transcriptomic reprogramming.

SELECTION OF CITATIONS
SEARCH DETAIL
...