Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 14(6): 3270-6, 2014 Jun 11.
Article in English | MEDLINE | ID: mdl-24844319

ABSTRACT

Hexagonal boron nitride is the only substrate that has so far allowed graphene devices exhibiting micrometer-scale ballistic transport. Can other atomically flat crystals be used as substrates for making quality graphene heterostructures? Here we report on our search for alternative substrates. The devices fabricated by encapsulating graphene with molybdenum or tungsten disulfides and hBN are found to exhibit consistently high carrier mobilities of about 60 000 cm(2) V(-1) s(-1). In contrast, encapsulation with atomically flat layered oxides such as mica, bismuth strontium calcium copper oxide, and vanadium pentoxide results in exceptionally low quality of graphene devices with mobilities of ∼1000 cm(2) V(-1) s(-1). We attribute the difference mainly to self-cleansing that takes place at interfaces between graphene, hBN, and transition metal dichalcogenides. Surface contamination assembles into large pockets allowing the rest of the interface to become atomically clean. The cleansing process does not occur for graphene on atomically flat oxide substrates.

2.
Phys Rev Lett ; 99(22): 226103, 2007 Nov 30.
Article in English | MEDLINE | ID: mdl-18233301

ABSTRACT

In situ band gap mapping of the V2O5(001) crystal surface revealed a reversible metal-to-insulator transition at 350-400 K, which occurs inhomogeneously across the surface and expands preferentially in the direction of the vanadyl (V=O) double rows. Supported by density functional theory and Monte Carlo simulations, the results are rationalized on the basis of the anisotropic growth of vanadyl-oxygen vacancies and a concomitant oxygen loss driven metal-to-insulator transition at the surface. At elevated temperatures irreversible surface reduction proceeds sequentially as V2O5(001) --> V6O13(001) --> V2O3(0001).

3.
Phys Rev Lett ; 77(7): 1370-1373, 1996 Aug 12.
Article in English | MEDLINE | ID: mdl-10063059
SELECTION OF CITATIONS
SEARCH DETAIL
...