Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 10644, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724596

ABSTRACT

Along with the mean sea level rise due to climate change, the sea level exhibits natural variations at a large number of different time scales. One of the most important is the one linked with the seasonal cycle. In the Northern Hemisphere winter, the sea level is as much as 20 cm below its summer values in some locations. It is customary to associate these variations with the seasonal cycle of the sea surface net heat flux which drives an upper-ocean thermal expansion creating a positive steric sea level anomaly. Here, using a novel framework based on steric sea level variance budget applied to observations and to the Estimating the Circulation and Climate of the Ocean state estimate, we demonstrate that the steric sea level seasonal cycle amplitude results from a balance between the seasonal sea surface net heat flux and the oceanic advective processes. Moreover, for up to 50% of the ocean surface, surface heat fluxes act to damp the seasonal steric sea level cycle amplitude, which is instead forced by oceanic advection processes. We also show that eddies play an important role in damping the steric sea level seasonal cycle. Our study contributes to a better understanding of the steric sea level mechanisms which is crucial to ensure accurate and reliable climate projections.

2.
Mar Pollut Bull ; 187: 114533, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36610301

ABSTRACT

The world's oceans are facing plastic pollution, 80 % of which of terrestrial origin flowing from the mismanaged waste of coastal populations and from river discharge. To study the fate of this pollution, the three-dimensional trajectories of neutral plastic particles continuously released for 24 years according to realistic source scenarios are computed using currents from a global ocean-wave coupled model at 14∘ resolution and from a reference ocean-only model. These Lagrangian simulations show that neutral particles accumulate at the surface in the subtropical convergence zones from where they penetrate to about 250 m depth and strongly disperse over 40∘ of latitude. About 5.3 % of the particles remain at the surface with the wave-coupled model currents, whereas only 2 % for the uncoupled model, with some modulation in the location of the convergence zones. Increased surface retention results from upward vertical velocities induced by widespread divergence of waves-induced Stokes transport in the surface layers.


Subject(s)
Environmental Pollution , Plastics , Oceans and Seas , Environmental Monitoring/methods
3.
Mar Pollut Bull ; 165: 112116, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33581569

ABSTRACT

Marine plastic pollution is a global issue, from the shores to the open ocean. Understanding the pathway and fate of plastic debris is fundamental to manage and reduce plastic pollution. Here, the fate of floating plastic pollution discharged along the coasts is studied by comparing two sources, one based on river discharges and the other on mismanaged waste from coastal populations, using a Lagrangian numerical analysis in a global ocean circulation model. About 1/3 of the particles end up in the open ocean and 2/3 on beaches. The input scenario largely influences the accumulation of particles toward the main subtropical convergence zones, with the South Pacific and North Atlantic being mostly fed by the coastal population inputs. The input scenario influences the number of beached particles that end up in several coastal areas. Beaching occurs mainly locally, although a significant number of particles travel long distances, allowing for global connectivity.


Subject(s)
Environmental Monitoring , Plastics , Environmental Pollution , Oceans and Seas , Rivers , Waste Products/analysis
4.
Mar Pollut Bull ; 148: 202-209, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31434047

ABSTRACT

In the open ocean, floating surface debris such as plastics concentrate in five main accumulation zones centered around 30° latitude, far from highly turbulent areas. Using Lagrangian advection of numerical particles by surface currents from ocean model reanalysis, previous studies have shown long-distance connection from the accumulation zones of the South Indian to the South Pacific oceans. An important physical process affecting surface particles but missing in such analyses is wave-induced Stokes drift. Taking into account surface Stokes drift from a wave model reanalysis radically changes the fate of South Indian particles. The convergence region moves from the east to the west of the basin, so particles leak to the South Atlantic rather than the South Pacific. Stokes drift changes the South Indian sensitive balance between Ekman convergence and turbulent diffusion processes, inducing either westward entrainment in the north of the accumulation zone, or eastward entrainment in the south.


Subject(s)
Water Pollutants/analysis , Environmental Monitoring , India , Pacific Ocean , Plastics/analysis , Seawater/chemistry
5.
Mar Pollut Bull ; 80(1-2): 302-11, 2014 Mar 15.
Article in English | MEDLINE | ID: mdl-24433999

ABSTRACT

Coastal zones and the biosphere as a whole show signs of cumulative degradation due to the use and disposal of plastics. To better understand the manifestation of plastic pollution in the Atlantic Ocean, we partnered with local communities to determine the concentrations of micro-plastics in 125 beaches on three islands in the Canary Current: Lanzarote, La Graciosa, and Fuerteventura. We found that, in spite of being located in highly-protected natural areas, all beaches in our study area are exceedingly vulnerable to micro-plastic pollution, with pollution levels reaching concentrations greater than 100 g of plastic in 1l of sediment. This paper contributes to ongoing efforts to develop solutions to plastic pollution by addressing the questions: (i) Where does this pollution come from?; (ii) How much plastic pollution is in the world's oceans and coastal zones?; (iii) What are the consequences for the biosphere?; and (iv) What are possible solutions?


Subject(s)
Conservation of Natural Resources , Plastics/analysis , Waste Products/analysis , Water Pollutants, Chemical/analysis , Atlantic Ocean , Bathing Beaches/statistics & numerical data , Environmental Monitoring , Spain , Waste Products/statistics & numerical data , Water Pollution, Chemical/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL
...