Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Chemosphere ; 248: 126001, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32041063

ABSTRACT

Mercury (Hg) transformations in sediments are key factors in the Hg exposure pathway for wildlife and humans yet are poorly characterized in Arctic lakes. As the Arctic is rapidly warming, it is important to understand how the rates of Hg methylation and demethylation (wich determine Hg bioavailability) change with temperature in lake sediments. Methylation and demethylation potentials were determined for littoral sediments (2.5 m water depth) in two deep and two shallow lakes in the Canadian Arctic using Hg stable isotope tracers at incubation temperatures of 4, 8, or 16 °C for 24 h. Compared to sediments from other regions, Hg methylation and demethylation potentials in these sediments are low. The maximum depth of the lake from which sediment was collected exerted a stronger influence over methylation potential than sediment Hg concentration or organic matter content; the shallowest lake had the highest Hg methylation potential. Sediments from the shallowest lake also demonstrated the greatest response to the temperature treatments, with significantly higher methylation potentials in the 8 and 16 °C treatments. Sediments from the deep lakes demonstrated greater demethylation potentials than shallow lakes. The methylmercury to total Hg ratio in sediments supported the measured transformation potentials as the lake with the greatest methylation potential had the highest ratio. This study supports previous works indicating that Hg methylation potential may increase as the Arctic warms, but demethylation potential does not respond to warming to the same degree, indicating that Hg methylation may predominate in warming Arctic sediments.


Subject(s)
Environmental Monitoring , Mercury/analysis , Water Pollutants, Chemical/analysis , Arctic Regions , Canada , Demethylation , Geologic Sediments , Lakes/chemistry , Mercury/metabolism , Methylation , Methylmercury Compounds/metabolism , Water Pollutants, Chemical/metabolism
2.
Sci Total Environ ; 678: 801-812, 2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31085496

ABSTRACT

Climate warming and mercury (Hg) are concurrently influencing Arctic ecosystems, altering their functioning and threatening food security. Non-anadromous Arctic char (Salvelinus alpinus) in small lakes were used to biomonitor these two anthropogenic stressors, because this iconic Arctic species is a long-lived top predator in relatively simple food webs, and yet population characteristics vary greatly, reflecting differences between lake systems. Mercury concentrations in six landlocked Arctic char populations on Cornwallis Island, Nunavut have been monitored as early as 1989, providing a novel dataset to examine differences in muscle [Hg] among char populations, temporal trends, and the relationship between climate patterns and Arctic char [Hg]. We found significant lake-to-lake differences in length-adjusted Arctic char muscle [Hg], which varied by up to 9-fold. Arctic char muscle [Hg] was significantly correlated to dissolved and particulate organic carbon concentrations in water; neither watershed area or vegetation cover explained differences. Three lakes exhibited significant temporal declines in length-adjusted [Hg] in Arctic char; the other three lakes had no significant trends. Though precipitation, temperature, wind speed, and sea ice duration were tested, no single climate variable was significantly correlated to length-adjusted [Hg] across populations. However, Arctic char Hg in Resolute Lake exhibited a significant correlation with sea ice duration, which is likely closely linked to lake ice duration, and which may impact Hg processing in lakes. Additionally, Arctic char [Hg] in Amituk Lake was significantly correlated to snow fall, which may be linked to Hg deposition. The lack of consistent temporal trends in neighboring char populations indicates that currently, within lake processes are the strongest drivers of [Hg] in char in the study lakes and potentially in other Arctic lakes, and that the influence of climate change will likely vary from lake to lake.


Subject(s)
Climate Change , Climate , Environmental Exposure/analysis , Mercury/metabolism , Trout/metabolism , Water Pollutants, Chemical/metabolism , Animals , Environmental Monitoring , Lakes/chemistry , Mercury/chemistry , Nunavut , Seasons , Water Pollutants, Chemical/chemistry
3.
Environ Sci Technol ; 45(20): 8982-8, 2011 Oct 15.
Article in English | MEDLINE | ID: mdl-21894892

ABSTRACT

Mercury (Hg) contamination is a global issue with implications for both ecosystem and human health. In this study, we use a new approach to link Hg exposure to health effects in spotted gar (Lepisosteus oculatus) from Caddo Lake (TX/LA). Previous field studies have reported elevated incidences of macrophage centers in liver, kidney, and spleen of fish with high concentrations of Hg. Macrophage centers are aggregates of specialized white blood cells that form as an immune response to tissue damage, and are considered a general biomarker of contaminant toxicity. We found elevated incidences of macrophage centers in liver of spotted gar and used a new technology for ecotoxicology studies, laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), to colocalize aggregates and Hg deposits within the tissue architecture. We conclude that Hg compromises the health of spotted gar in our study and, perhaps, other fish exposed to elevated concentrations of Hg.


Subject(s)
Fishes/metabolism , Mass Spectrometry/methods , Mercury/metabolism , Animals , Environmental Monitoring , Lakes
SELECTION OF CITATIONS
SEARCH DETAIL