Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 22(4): 1415-23, 2016 Jan 22.
Article in English | MEDLINE | ID: mdl-26683093

ABSTRACT

A major objective of nanomedicine is to combine in a controlled manner multiple functional entities into a single nanoscale device to target particles with great spatial precision, thereby increasing the selectivity and potency of therapeutic drugs. A multifunctional nanoparticle is described for controlled conjugation of a cytotoxic drug, a cancer cell targeting ligand, and an imaging moiety. The approach is based on the chemical synthesis of polyethylene glycol that at one end is modified by a thioctic acid for controlled attachment to a gold core. The other end of the PEG polymers is modified by a hydrazine, amine, or dibenzocyclooctynol moiety for conjugation with functional entities having a ketone, activated ester, or azide moiety, respectively. The conjugation approach allowed the controlled attachment of doxorubicin through an acid-labile hydrazone linkage, an Alexa Fluor dye through an amide bond, and a glycan-based ligand for the cell surface receptor CD22 of B-cells using strain promoted azide-alkyne cycloaddition. The incorporation of the ligand for CD22 led to rapid entry of the nanoparticle by receptor-mediated endocytosis. Covalent attachment of doxorubicin via hydrazone linkage caused pH-responsive intracellular release of doxorubicin and significantly enhanced the cytotoxicity of nanoparticles. A remarkable 60-fold enhancement in cytotoxicity of CD22 (+) lymphoma cells was observed compared to non- targeted nanoparticles.


Subject(s)
Antineoplastic Agents/chemistry , Doxorubicin/chemistry , Drug Delivery Systems/methods , Gold/chemistry , Lymphoma, B-Cell/chemistry , Nanoparticles/chemistry , Polyethylene Glycols/chemistry , Polymers/chemistry , Antineoplastic Agents/metabolism , Cell Line, Tumor , Cyclooctanes/chemistry , Cyclooctanes/metabolism , Doxorubicin/pharmacology , Drug Carriers , Endocytosis , Humans , Hydrogen-Ion Concentration , Lymphoma, B-Cell/metabolism
2.
Chemistry ; 20(28): 8753-60, 2014 Jul 07.
Article in English | MEDLINE | ID: mdl-24906200

ABSTRACT

Strain-promoted 1,3-dipolar cycloaddition of cyclooctynes with 1,3-dipoles such as azides, nitrones, and nitrile oxides, are of interest for the functionalization of polymers. In this study, we have explored the use of a 4-dibenzocyclooctynol (DIBO)-containing chain transfer agent in reversible addition-fragmentation chain transfer polymerizations. The controlled radical polymerization resulted in well-defined DIBO-terminating polymers that could be modified by 1,3-dipolar cycloadditions using nitrones, nitrile oxides, and azides having a hydrophilic moiety. The self-assembly properties of the resulting block copolymers have been examined. The versatility of the methodology was further demonstrated by the controlled preparation of gold nanoparticles coated with the DIBO-containing polymers to produce materials that can be further modified by strain-promoted cycloadditions.


Subject(s)
Click Chemistry/methods , Cycloaddition Reaction/methods , Polymers/chemistry , Cyclization , Polymerization
SELECTION OF CITATIONS
SEARCH DETAIL
...