Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 132(26): 263201, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38996290

ABSTRACT

The omg protocol is a promising paradigm that uses multiple, application-specific, qubit subspaces within the Hilbert space of each single atom during quantum information processing. A key assumption for omg operation is that a subspace can be accessed independently without deleterious effects on information stored in other subspaces. We find that intensity noise during laser-based quantum gates in one subspace can cause decoherence in other subspaces, potentially complicating omg operation. We show, however, that a magnetic-field-induced vector light shift can be used to eliminate this source of decoherence. As this technique simply requires choosing a specific, magnetic field-dependent polarization for the gate lasers, it is straightforward to implement and potentially helpful for omg-based quantum technology.

2.
J Phys Chem Lett ; 15(21): 5665-5673, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38767654

ABSTRACT

Molecules cooled to ultracold temperatures are desirable for applications in fundamental physics and quantum information science. However, cooling polyatomic molecules with more than six atoms has not yet been achieved. Building on the idea of an optical cycling center (OCC), a moiety supporting a set of localized and isolated electronic states within a polyatomic molecule, molecules with two OCCs (bi-OCCs) may afford better cooling efficiency by doubling the photon scattering rate. By using quantum chemistry calculations, we assess the extent of the coupling of the two OCCs with each other and the molecular scaffold. We show that promising coolable bi-OCC molecules can be proposed by following chemical design principles.

3.
J Phys Chem Lett ; 15(2): 590-597, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38198595

ABSTRACT

Polyatomic molecules equipped with optical cycling centers (OCCs), enabling continuous photon scattering during optical excitation, are exciting candidates for advancing quantum information science. However, as these molecules grow in size and complexity, the interplay of complex vibronic couplings on optical cycling becomes a critical but relatively unexplored consideration. Here, we present an extensive exploration of Fermi resonances in large-scale OCC-containing molecules using high-resolution dispersed laser-induced fluorescence and excitation spectroscopy. These resonances manifest as vibrational coupling leading to intensity borrowing by combination bands near optically active harmonic bands, which require additional repumping lasers for effective optical cycling. To mitigate these effects, we explore altering the vibrational energy level spacing through substitutions on the phenyl ring or changes in the OCC itself. While the complete elimination of vibrational coupling in complex molecules remains challenging, our findings highlight significant mitigation possibilities, opening new avenues for optimizing optical cycling in large polyatomic molecules.

4.
Rev Sci Instrum ; 94(4)2023 Apr 01.
Article in English | MEDLINE | ID: mdl-38081246

ABSTRACT

We present the design, construction, and simulation of a simple, low-cost external cavity diode laser with a measured free-running frequency drift rate of 1.4(1) MHz/h at 852 nm. This performance is achieved in a compact aluminum structure held inside an airtight, temperature-controlled enclosure. The high thermal conductivity of the laser cavity and the stable temperature environment inside the enclosure minimize the time-varying, spatial temperature gradients across the laser cavity. We present thermal finite element method simulations, which quantify the effects of temperature gradients, and suggest that the drift rate is likely limited by the laser-diode and piezo-aging.

5.
Phys Rev Lett ; 131(6): 063001, 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37625070

ABSTRACT

^{133}Ba^{+} is illuminated by a laser that is far detuned from optical transitions, and the resulting spontaneous Raman scattering rate is measured. The observed scattering rate is lower than previous theoretical estimates. The majority of the discrepancy is explained by a more accurate treatment of the scattered photon density of states. This work establishes that, contrary to previous models, there is no fundamental atomic physics limit to laser-driven quantum gates from laser-induced spontaneous Raman scattering.

6.
J Phys Chem Lett ; 13(47): 11029-11035, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36413655

ABSTRACT

We report the production and spectroscopic characterization of strontium(I) phenoxide (SrOC6H5 or SrOPh) and variants featuring electron-withdrawing groups designed to suppress vibrational excitation during spontaneous emission from the electronically excited state. Optical cycling closure of these species, which is the decoupling of the vibrational state changes from spontaneous optical decay, is found by dispersed laser-induced fluorescence spectroscopy to be high, in accordance with theoretical predictions. A high-resolution, rotationally resolved laser excitation spectrum is recorded for SrOPh, allowing the estimation of spectroscopic constants and identification of candidate optical cycling transitions for future work. The results confirm the promise of strontium phenoxides for laser cooling and quantum state detection at the single-molecule level.


Subject(s)
Strontium , Vibration , Spectrometry, Fluorescence , Electrons , Cold Temperature
7.
Nat Chem ; 14(9): 995-999, 2022 09.
Article in English | MEDLINE | ID: mdl-35879444

ABSTRACT

Molecular design principles provide guidelines for augmenting a molecule with a smaller group of atoms to realize a desired property or function. We demonstrate that these concepts can be used to create an optical cycling centre, the Ca(I)-O unit, that can be attached to a number of aromatic ligands, enabling the scattering of many photons from the resulting molecules without changing the molecular vibrational state. Such capability plays a central role in quantum state preparation and measurement, as well as laser cooling and trapping, and is therefore a prerequisite for many quantum science and technology applications. We provide further molecular design principles that indicate the ability to optimize and expand this work to an even broader class of molecules. This represents a great step towards a quantum functional group, which may serve as a generic qubit moiety that can be attached to a wide range of molecular structures and surfaces.


Subject(s)
Light , Photons , Lasers , Molecular Structure , Organic Chemicals
8.
J Phys Chem Lett ; 13(30): 7029-7035, 2022 Aug 04.
Article in English | MEDLINE | ID: mdl-35900113

ABSTRACT

Rapid and repeated photon cycling has enabled precision metrology and the development of quantum information systems using atoms and simple molecules. Extending optical cycling to structurally complex molecules would provide new capabilities in these areas, as well as in ultracold chemistry. Increased molecular complexity, however, makes realizing closed optical transitions more difficult. Building on already established strong optical cycling of diatomic, linear triatomic, and symmetric top molecules, recent work has pointed the way to cycling of larger molecules, including phenoxides. The paradigm for these systems is an optical cycling center bonded to a molecular ligand. Theory has suggested that cycling may be extended to even larger ligands, like naphthalene, pyrene, and coronene. Herein, we study optical excitation and fluorescent vibrational branching of CaO-[Formula: see text], SrO-[Formula: see text], and CaO-[Formula: see text] and find only weak decay to excited vibrational states, indicating a promising path to full quantum control and laser cooling of large arene-based molecules.

9.
J Phys Chem Lett ; 12(16): 3989-3995, 2021 Apr 29.
Article in English | MEDLINE | ID: mdl-33877848

ABSTRACT

Closed, laser-induced optical transitions ("optical cycling transitions") of molecules can be used for state preparation and measurement in quantum information science and quantum sensing. Increasingly complex molecular species supporting optical cycling can provide new capabilities for quantum science, and it is not clear if there is a limit on their size or complexity. We explore Ca-O-L molecular constructs to support the optical cycling center, Ca, with ligands, L, being arenes. We find that L can be as large as coronene (i.e., CaOC24H11) without losing the diagonality of the Franck-Condon factor (FCF). Furthermore, L can be substituted with electron-withdrawing groups to improve the FCF. Larger L, beyond ∼7 rings, can disrupt the diagonality of the FCF by closing the HOMO-LUMO ligand electronic state gap and reordering with the local states on the cycling center. Overall, we find that optical cycling can be retained for arenes, and we offer a principle for their design.

10.
Sci Adv ; 7(2)2021 Jan.
Article in English | MEDLINE | ID: mdl-33523979

ABSTRACT

The reaction C+ + H2O → HCO+/HOC+ + H is one of the most important astrophysical sources of HOC+ ions, considered a marker for interstellar molecular clouds exposed to intense ultraviolet or x-ray radiation. Despite much study, there is no consensus on rate constants for formation of the formyl ion isomers in this reaction. This is largely due to difficulties in laboratory study of ion-molecule reactions under relevant conditions. Here, we use a novel experimental platform combining a cryogenic buffer-gas beam with an integrated, laser-cooled ion trap and high-resolution time-of-flight mass spectrometer to probe this reaction at the temperature of cold interstellar clouds. We report a reaction rate constant of k = 7.7(6) × 10-9 cm3 s-1 and a branching ratio of formation η = HOC+/HCO+ = 2.1(4). Theoretical calculations suggest that this branching ratio is due to the predominant formation of HOC+ followed by isomerization of products with internal energy over the isomerization barrier.

11.
Phys Chem Chem Phys ; 22(43): 24964-24973, 2020 Nov 21.
Article in English | MEDLINE | ID: mdl-33140766

ABSTRACT

Dipole-phonon quantum logic (DPQL) leverages the interaction between polar molecular ions and the motional modes of a trapped-ion Coulomb crystal to provide a potentially scalable route to quantum information science. Here, we study a class of candidate molecular ions for DPQL, the cationic alkaline-earth monoxides and monosulfides, which possess suitable structure for DPQL and can be produced in existing atomic ion experiments with little additional complexity. We present calculations of DPQL operations for one of these molecules, CaO+, and discuss progress towards experimental realization. We also further develop the theory of DPQL to include state preparation and measurement and entanglement of multiple molecular ions.

12.
Sci Rep ; 10(1): 16494, 2020 Oct 05.
Article in English | MEDLINE | ID: mdl-33020525

ABSTRACT

Compact, high power lasers with narrow linewidth are important tools for the manipulation of quantum systems. We demonstrate a compact, self-injection locked, Fabry-Perot semiconductor laser diode with high output power at 493 nm. A high quality factor magnesium fluoride whispering gallery mode resonator enables both high passive stability and 1 kHz instantaneous linewidth. We use this laser for laser-cooling, in-situ isotope purifcation, and probing barium atomic ions confined in a radio-frequency ion trap. The results here demonstrate the suitability of these lasers in trapped ion quantum information processing and for probing weak coherent optical transitions.

13.
Phys Rev Lett ; 125(12): 120501, 2020 Sep 18.
Article in English | MEDLINE | ID: mdl-33016736

ABSTRACT

The interaction between the electric dipole moment of a trapped molecular ion and the phonon modes of the confined Coulomb crystal couples the orientation of the molecule to its motion. We consider the practical feasibility of harnessing this interaction to initialize, process, and read out quantum information encoded in molecular ion qubits without ever optically illuminating the molecules. We present two schemes wherein a molecular ion can be entangled with a cotrapped atomic ion qubit, providing, among other things, a means for molecular state preparation and measurement. We also show that virtual phonon exchange can significantly boost the range of the intermolecular dipole-dipole interaction, allowing strong coupling between widely separated molecular ion qubits.

14.
Science ; 369(6509): 1304-1305, 2020 09 11.
Article in English | MEDLINE | ID: mdl-32913090
15.
Phys Chem Chem Phys ; 22(30): 17075-17090, 2020 Aug 05.
Article in English | MEDLINE | ID: mdl-32699869

ABSTRACT

Optical cycling, a continuous photon scattering off atoms or molecules, plays a central role in the quantum information science. While optical cycling has been experimentally achieved for many neutral species, few molecular ions have been investigated. We present a systematic theoretical search for diatomic molecular ions suitable for optical cycling using equation-of-motion coupled-cluster methods. Inspired by the electronic structure patterns of laser-cooled neutral molecules, we establish the design principles for molecular ions and explore various possible cationic molecular frameworks. The results show that finding a perfect molecular ion for optical cycling is challenging, yet possible. Among various possible diatomic molecules we suggest several candidates, which require further attention from both theory and experiment: YF+, SiO+, PN+, SiBr+, and BO+.

16.
Phys Rev Lett ; 122(23): 233401, 2019 Jun 14.
Article in English | MEDLINE | ID: mdl-31298913

ABSTRACT

Using a recently developed method for precisely controlling collision energy, we observe a dramatic suppression of inelastic collisions between an atom and ion (Ca+Yb^{+}) at low collision energy. This suppression, which is expected to be a universal phenomenon, arises when the spontaneous emission lifetime of the excited state is comparable to or shorter than the collision complex lifetime. We develop a technique to remove this suppression and engineer excited-state interactions. By dressing the system with a strong catalyst laser, a significant fraction of the collision complexes can be excited at a specified atom-ion separation. This technique allows excited-state collisions to be studied, even at ultracold temperature, and provides a general method for engineering ultracold excited-state interactions.

17.
Nat Chem ; 11(7): 615-621, 2019 07.
Article in English | MEDLINE | ID: mdl-31061457

ABSTRACT

Recent advances have enabled studies of atom-ion chemistry at unprecedentedly low temperatures, allowing precision observation of chemical reactions and novel chemical dynamics. So far, these studies have primarily involved reactions between atoms and atomic ions or non-polar molecular ions, often in their electronic ground state. Here, we extend this work by studying an excited atom-polar-molecular-ion chemical reaction (Ca* + BaCl+) at low temperature in a hybrid atom-ion trapping system. The reaction rate and product branching fractions are measured and compared to model calculations as a function of both atomic quantum state and collision energy. At the lowest collision energy we find that the chemical dynamics differ dramatically from capture theory predictions and are primarily dictated by the radiative lifetime of the atomic quantum state instead of the underlying excited-state interaction potential. This reaction blockading effect, which greatly suppresses the reactivity of short-lived excited states, provides a means for directly probing the reaction range and also naturally suppresses unwanted chemical reactions in hybrid trapping experiments.

18.
Phys Chem Chem Phys ; 21(26): 14005-14011, 2019 Jul 03.
Article in English | MEDLINE | ID: mdl-30620013

ABSTRACT

Low temperature reactions between laser-cooled Be+(2S1/2) ions and partially deuterated water (HOD) molecules have been investigated using an ion trap and interpreted with zero-point corrected quasi-classical trajectory calculations on a highly accurate global potential energy surface for the ground electronic state. Both product channels have been observed for the first time, and the branching to BeOD+ + H is found to be 0.58 ± 0.14. The experimental observation is reproduced by both quasi-classical trajectory and statistical calculations. Theoretical analyses reveal that the branching to the two product channels is largely due to the availability of open states in each channel.

19.
Rev Sci Instrum ; 89(8): 083112, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30184618

ABSTRACT

We demonstrate an ion shuttling technique for high-resolution control of atom-ion collision energy by translating an ion held within a radio-frequency trap through a magneto-optical atom trap. The technique is demonstrated both experimentally and through numerical simulations, with the experimental results indicating control of ion kinetic energies from 0.05 to 1 K with a fractional resolution of ∼10 and the simulations demonstrating that kinetic energy control up to 120 K with a maximum predicted resolution of ∼100 is possible, offering order-of-magnitude improvements over most alternative techniques. Finally, we perform a proof-of-principle chemistry experiment using this technique and outline how the method may be refined in the future and applied to the study of molecular ion chemistry.

20.
J Phys Chem Lett ; 9(13): 3555-3560, 2018 Jul 05.
Article in English | MEDLINE | ID: mdl-29893569

ABSTRACT

We investigate reactions between laser-cooled Be+ ions and room-temperature water molecules using an integrated ion trap and high-resolution time-of-flight mass spectrometer. This system allows simultaneous measurement of individual reaction rates that are resolved by reaction product. The rate coefficient of the Be+(2S1/2) + H2O → BeOH+ + H reaction is measured for the first time and is found to be approximately two times smaller than predicted by an ion-dipole capture model. Zero-point-corrected quasi-classical trajectory calculations on a highly accurate potential energy surface for the ground electronic state reveal that the reaction is capture-dominated, but a submerged barrier in the product channel lowers the reactivity. Furthermore, laser excitation of the ions from the 2S1/2 ground state to the 2P3/2 state opens new reaction channels, and we report the rate and branching ratio of the Be+(2P3/2) + H2O → BeOH+ + H and H2O+ + Be reactions. The excited-state reactions are nonadiabatic in nature.

SELECTION OF CITATIONS
SEARCH DETAIL
...