Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Stem Cell ; 30(11): 1434-1451.e9, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37922878

ABSTRACT

Most organs have tissue-resident immune cells. Human organoids lack these immune cells, which limits their utility in modeling many normal and disease processes. Here, we describe that pluripotent stem cell-derived human colonic organoids (HCOs) co-develop a diverse population of immune cells, including hemogenic endothelium (HE)-like cells and erythromyeloid progenitors that undergo stereotypical steps in differentiation, resulting in the generation of functional macrophages. HCO macrophages acquired a transcriptional signature resembling human fetal small and large intestine tissue-resident macrophages. HCO macrophages modulate cytokine secretion in response to pro- and anti-inflammatory signals and were able to phagocytose and mount a robust response to pathogenic bacteria. When transplanted into mice, HCO macrophages were maintained within the colonic organoid tissue, established a close association with the colonic epithelium, and were not displaced by the host bone-marrow-derived macrophages. These studies suggest that HE in HCOs gives rise to multipotent hematopoietic progenitors and functional tissue-resident macrophages.


Subject(s)
Pluripotent Stem Cells , Humans , Mice , Animals , Hematopoietic Stem Cells , Colon , Organoids , Macrophages
2.
Hum Mutat ; 43(12): 2295-2307, 2022 12.
Article in English | MEDLINE | ID: mdl-36054288

ABSTRACT

Functional assays provide important evidence for classifying the disease significance of germline variants in DNA mismatch repair genes. Numerous laboratories, including our own, have developed functional assays to study mismatch repair gene variants. However, previous assays are limited due to the model system employed, the manner of gene expression, or the environment in which function is assessed. Here, we developed a human cell-based approach for testing the function of variants of uncertain significance (VUS) in the MLH1 gene. Using clustered regularly interspaced short palindromic repeats gene editing, we knocked in MLH1 VUS into the endogenous MLH1 loci in human embryonic stem cells. We examined their impact on RNA and protein, including their ability to prevent microsatellite instability and instigate a DNA damage response. A statistical clustering analysis determined the range of functions associated with known pathogenic or benign variants, and linear regression was performed using existing odds in favor of pathogenicity scores for these control variants to calibrate our functional assay results. By converting the functional outputs into a single odds in favor of pathogenicity score, variant classification expert panels can use these results to readily reassess these VUS. Ultimately, this information will guide proper diagnosis and disease management for suspected Lynch syndrome patients.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis , DNA Mismatch Repair , Humans , DNA Mismatch Repair/genetics , MutL Protein Homolog 1/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/diagnosis , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/pathology , Microsatellite Instability , Germ-Line Mutation/genetics , Mismatch Repair Endonuclease PMS2/genetics
4.
Cell Stem Cell ; 21(1): 51-64.e6, 2017 07 06.
Article in English | MEDLINE | ID: mdl-28648364

ABSTRACT

Gastric and small intestinal organoids differentiated from human pluripotent stem cells (hPSCs) have revolutionized the study of gastrointestinal development and disease. Distal gut tissues such as cecum and colon, however, have proved considerably more challenging to derive in vitro. Here we report the differentiation of human colonic organoids (HCOs) from hPSCs. We found that BMP signaling is required to establish a posterior SATB2+ domain in developing and postnatal intestinal epithelium. Brief activation of BMP signaling is sufficient to activate a posterior HOX code and direct hPSC-derived gut tube cultures into HCOs. In vitro, HCOs express colonic markers and contained colon-specific cell populations. Following transplantation into mice, HCOs undergo morphogenesis and maturation to form tissue that exhibits molecular, cellular, and morphologic properties of human colon. Together these data show BMP-dependent patterning of human hindgut into HCOs, which will be valuable for studying diseases including colitis and colon cancer.


Subject(s)
Bone Morphogenetic Proteins/metabolism , Colon/metabolism , Organoids/metabolism , Pluripotent Stem Cells/metabolism , Signal Transduction , Animals , Colon/cytology , Heterografts , Humans , Mice , Mice, Inbred NOD , Organoids/cytology , Organoids/transplantation , Pluripotent Stem Cells/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...