Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Metrologia ; 58(1)2021 Feb.
Article in English | MEDLINE | ID: mdl-34354301

ABSTRACT

We use an array of transition-edge sensors, cryogenic microcalorimeters with 4 eV energy resolution, to measure L x-ray emission-line profiles of four elements of the lanthanide series: praseodymium, neodymium, terbium, and holmium. The spectrometer also surveys numerous x-ray standards in order to establish an absolute-energy calibration traceable to the international system of units for the energy range 4 keV to 10 keV. The new results include emission line profiles for 97 lines, each expressed as a sum of one or more Voigt functions; improved absolute energy uncertainty on 71 of these lines relative to existing reference data; a median uncertainty on the peak energy of 0.24 eV, four to ten times better than the median of prior work; and six lines that lack any measured values in existing reference tables. The 97 lines comprise nearly all of the most intense L lines from these elements under broad-band x-ray excitation. The work improves on previous measurements made with a similar cryogenic spectrometer by the use of sensors with better linearity in the absorbed energy and a gold x-ray absorbing layer that has a Gaussian energy-response function. It also employs a novel sample holder that enables rapid switching between science targets and calibration targets with excellent gain balancing. Most of the results for peak energy values shown here should be considered as replacements for the currently tabulated standard reference values, while the line shapes given here represent a significant expansion of the scope of available reference data.

2.
Article in English | MEDLINE | ID: mdl-32489233

ABSTRACT

We report recent advances in absolute x-ray wavelength metrology in the context of producing modern standard reference data. Primary x-ray wavelength standards are produced today using diffraction spectrometers using crystal optics arranged to be operated in dispersive and non-dispersive geometries, giving natural-line-width limited profiles with high resolution and accuracy. With current developments, measurement results can be made traceable to the Système internationale definition of the meter by using diffraction crystals that have absolute lattice-spacing provenance through x-ray-optical interferometry. Recent advances in goniometry, innovation of electronic x-ray area detectors, and new in situ alignment and measurement methods now permit robust measurement and quantification of previously-elusive systematic uncertainties. This capability supports infrastructures like the NIST Standard Reference Data programs and the International Initiative on X-ray Fundamental Parameters and their contributions to science and industry. Such data projects are further served by employing complementary wavelength-and energy-dispersive spectroscopic techniques. This combination can provide, among other things, new tabulations of less-intense x-ray lines that need to be identified in x-ray fluorescence investigation of uncharacterized analytes. After delineating the traceability chain for primary x-ray wavelength standards, and NIST efforts to produce standard reference data and materials in particular, this paper posits the new opportunities for x-ray reference data tabulation that modern methods now afford.

3.
Rev Sci Instrum ; 87(11): 11E305, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27910617

ABSTRACT

A Cauchois transmission-crystal spectrometer has been developed with high crystal resolving power in the 6 keV-15 keV energy range and sufficient sensitivity to record single-shot spectra from the Lawrence Livermore National Laboratory (LLNL) Titan laser and other comparable or more energetic lasers. The spectrometer capabilities were tested by recording the W L transitions from a laboratory source and the extended x-ray absorption fine structure (EXAFS) spectrum through a Cu foil.

4.
Article in English | MEDLINE | ID: mdl-31093029

ABSTRACT

Experiments were performed at the LLNL Titan laser to measure the propagation direction of the energetic electrons that were generated during the interaction of the polarized laser beam with solid targets in the case of normal incidence. The energetic electrons propagated through vacuum to spectator metal wires in the polarization direction and in the perpendicular direction, and the K shell spectra from the different wire materials were recorded as functions of the distance from the laser focal spot. It was found that the fluence of the energetic electrons driven into the spectator wires in the polarization direction compared to the perpendicular direction was larger and increased with the distance from the focal spot. This indicates that energetic electrons are preferentially driven in the direction of the intense oscillating electric field of the incident laser beam in agreement with the multiphoton inverse Bremsstrahlung absorption process.

5.
Rev Sci Instrum ; 85(11): 11D618, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25430194

ABSTRACT

A high resolution crystal spectrometer utilizing a crystal in transmission geometry has been developed and experimentally optimized to measure the widths of emission lines in the 10-60 keV energy range with eV accuracy. The spectrometer achieves high spectral resolution by utilizing crystal planes with small lattice spacings (down to 2d = 0.099 nm), a large crystal bending radius and Rowland circle diameter (965 mm), and an image plate detector with high spatial resolution (60 µm in the case of the Fuji TR image plate). High resolution W L-shell and K-shell laboratory test spectra in the 10-60 keV range and Ho K-shell spectra near 47 keV recorded at the LLNL Titan laser facility are presented. The Ho K-shell spectra are the highest resolution hard x-ray spectra recorded from a solid target irradiated by a high-intensity laser.

7.
Phys Rev Lett ; 109(15): 153001, 2012 Oct 12.
Article in English | MEDLINE | ID: mdl-23102303

ABSTRACT

We report a new test of quantum electrodynamics (QED) for the w (1s2p(1)P(1)→1s(2)(1)S(0)) x-ray resonance line transition energy in heliumlike titanium. This measurement is one of few sensitive to two-electron QED contributions. Systematic errors such as Doppler shifts are minimized in our experiment by trapping and stripping Ti atoms in an electron beam ion trap and by applying absolute wavelength standards to calibrate the dispersion function of a curved-crystal spectrometer. We also report a more general systematic discrepancy between QED theory and experiment for the w transition energy in heliumlike ions for Z>20. When all of the data available in the literature for Z=16-92 are taken into account, the divergence is seen to grow as approximately Z(3) with a statistical significance on the coefficient that rises to the level of 5 standard deviations. Our result for titanium alone, 4749.85(7) eV for the w line, deviates from the most recent ab initio prediction by 3 times our experimental uncertainty and by more than 10 times the currently estimated uncertainty in the theoretical prediction.

8.
Rev Sci Instrum ; 83(4): 043104, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22559512

ABSTRACT

In the pursuit of novel, laser-produced x-ray sources for medical imaging applications, appropriate instrumental diagnostics need to be developed concurrently. A type of transmission crystal spectroscopy has previously been demonstrated as a survey tool for sources produced by high-power and high-energy lasers. The present work demonstrates the extension of this method into the study of medium-intensity laser driven hard x-ray sources with a design that preserves resolving power while maintaining high sensitivity. Specifically, spectroscopic measurements of characteristic Kα and Kß emissions were studied from Mo targets irradiated by a 100 fs, 200 mJ, Ti: sapphire laser with intensity of 10(17) W/cm(2) to 10(18) W∕cm(2) per shot. Using a transmission curved crystal spectrometer and off-Rowland circle imaging, resolving powers (E/ΔE) of around 300 for Mo Kα(2) at 17.37 keV were obtained with an end-to-end spectrometer efficiency of (1.13 ± 0.10) × 10(-5). This sensitivity is sufficient for registering x-ray lines with high signal to background from targets following irradiation by a single laser pulse, demonstrating the utility of this method in the study of the development of medium-intensity laser driven x-ray sources.

9.
Rev Sci Instrum ; 81(10): 10E302, 2010 Oct.
Article in English | MEDLINE | ID: mdl-21034001

ABSTRACT

The plasma-filled rod-pinch diode (PFRP) is an intense source of x-rays ideal for radiography of dense objects. In the PRFP megavoltage electrons from a pulsed discharge concentrate at the pointed end of a 1 mm diameter tapered tungsten rod. Ionization of this plasma might increase the energy of tungsten's Kα(1) fluorescence line, at 59.3182 keV, enough for the difference to be observed by a high-resolution Cauchois transmission crystal spectrograph. When the PFRP's intense hard bremsstrahlung is suppressed by the proper shielding, such an instrument gives excellent fluorescence spectra, albeit with as yet insufficient resolution to see any effect of tungsten's ionization. Higher resolution is possible with various straightforward upgrades that are feasible thanks to the radiation's high intensity.

10.
Rev Sci Instrum ; 81(10): 10E301, 2010 Oct.
Article in English | MEDLINE | ID: mdl-21034000

ABSTRACT

The transmission crystal spectrometer (TCS) is approved for taking data at the OMEGA-EP laser facility since 2009 and will be available for the OMEGA target chamber in 2010. TCS utilizes a Cauchois type cylindrically bent transmission crystal geometry with a source to crystal distance of 600 mm. Spectral images are recorded by image plates in four positions, one IP on the Rowland circle and three others at 200, 400, and 600 mm beyond the Rowland circle. An earlier version of TCS was used at LULI on experiments that determined the x-ray source size from spectral line broadening on one IP positioned behind the Rowland circle. TCS has recorded numerous backlighter spectra at EP for point projection radiography and for source size measurements. Hard x-ray source size can be determined from the source broadening of both K shell emission lines and from K absorption edges in the bremsstrahlung continuum, the latter being a new way to measure the spatial extent of the hard x-ray bremsstrahlung continuum.

11.
Rev Sci Instrum ; 81(10): 10E311, 2010 Oct.
Article in English | MEDLINE | ID: mdl-21034010

ABSTRACT

The potential of an x-ray magnifier prepared from a pair of asymmetrically cut crystals is studied to explore high energy x-ray imaging capabilities at high intensity laser facilities. OMEGA-EP and NIF when irradiating mid and high Z targets can be a source of high-energy x-rays whose production mechanisms and use as backlighters are a subject of active research. This paper studies the properties and potential of existing asymmetric cut crystal pairs from the National Institute of Standards and Technology (NIST) built in a new enclosure for imaging x-ray sources. The technique of the x-ray magnifier has been described previously. This new approach is aimed to find a design that could be used at laser facilities by magnifying the x-ray source into a screen far away from the target chamber center, with fixed magnification defined by the crystals' lattice spacing and the asymmetry angles. The magnified image is monochromatic and the imaging wavelength is set by crystal asymmetry and incidence angles. First laboratory results are presented and discussed.

12.
Rev Sci Instrum ; 81(10): 10E320, 2010 Oct.
Article in English | MEDLINE | ID: mdl-21034018

ABSTRACT

The dual crystal spectrometer (DCS) is an approved diagnostic at the OMEGA and the OMEGA-EP laser facilities for the measurement of high energy x-rays in the 11-90 keV energy range, e.g., for verification of the x-ray spectrum of backlighter targets of point projection radiography experiments. DCS has two cylindrically bent transmission crystal channels with image plate detectors at distances behind the crystals close to the size of the respective Rowland circle diameters taking advantage of the focusing effect of the cylindrically bent geometry. DCS, with a source to crystal distance of 1.2 m, provides the required energy dispersion for simultaneous detection of x-rays in a low energy channel (11-45 keV) and a high-energy channel (19-90 keV). A scaling study is described for varied pulse length with unchanged laser conditions (energy, focusing). The study shows that the Kα line intensity is not strongly dependent on the length of the laser pulse.

13.
Med Phys ; 23(10): 1659-70, 1996 Oct.
Article in English | MEDLINE | ID: mdl-8946364

ABSTRACT

Clinical efficacy of diagnostic radiology for mammographic examinations is critically dependent on source characteristics, detection efficiency, image resolution and applied high voltage. In this report we focus on means for evaluation of source-dependent issues including noninvasive determination of the applied high voltage, and characterization of intrinsic spectral distributions which in turn reflect the effects of added filtration and target and window contamination. It is shown that a particular form of x-ray curved crystal spectrometry with electronic imaging can serve to determine all relevant parameters within the confines of a standard clinical exposure.


Subject(s)
Mammography/instrumentation , Models, Theoretical , Electronics , Female , Humans , Spectrometry, X-Ray Emission/instrumentation , Spectrometry, X-Ray Emission/methods , X-Rays
14.
Br J Radiol ; 69(823): 636-49, 1996 Jul.
Article in English | MEDLINE | ID: mdl-8696701

ABSTRACT

The demand for improved spectral understanding of mammographic X-ray sources and non-invasive voltage calibration of such sources has led to research into applications using curved crystal spectroscopy. Recent developments and the promise of improved precision and control are described. Analytical equations are presented to indicate effects of errors and alignment problems in the flat and curved crystal systems. These are appropriate for all detection systems. Application to and testing of spectrographic detection (using standard X-ray film) is presented. Suitable arrangements exist which can be used to measure X-ray tube voltages well below 1 kV precision in the operating range of 20-35 kV.


Subject(s)
Mammography/instrumentation , Calibration , Crystallography, X-Ray , Equipment Design , Female , Humans , Scattering, Radiation , Technology, Radiologic
SELECTION OF CITATIONS
SEARCH DETAIL
...