Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 7127, 2022 11 28.
Article in English | MEDLINE | ID: mdl-36443291

ABSTRACT

Peptides, polymers of amino acids, comprise a vital and expanding therapeutic approach. Their rapid degradation by proteases, however, represents a major limitation to their therapeutic utility and chemical modifications to native peptides have been employed to mitigate this weakness. Herein, we describe functionalized thiocarbazate scaffolds as precursors of aza-amino acids, that, upon activation, can be integrated in a peptide sequence to generate azapeptides using conventional peptide synthetic methods. This methodology facilitates peptide editing-replacing targeted amino acid(s) with aza-amino acid(s) within a peptide-to form azapeptides with preferred therapeutic characteristics (extending half-life/bioavailability, while at the same time typically preserving structural features and biological activities). We demonstrate the convenience of this azapeptide synthesis platform in two well-studied peptides with short half-lives: FSSE/P5779, a tetrapeptide inhibitor of HMGB1/MD-2/TLR4 complex formation, and bradykinin, a nine-residue vasoactive peptide. This bench-stable thiocarbazate platform offers a robust and universal approach to optimize peptide-based therapeutics.


Subject(s)
Amino Acids , Bradykinin , Half-Life , Peptide Hydrolases , Endopeptidases
2.
Front Immunol ; 9: 2648, 2018.
Article in English | MEDLINE | ID: mdl-30538698

ABSTRACT

Macrophage cytokine production is regulated by neural signals, for example in the inflammatory reflex. Signals in the vagus and splenic nerves are relayed by choline acetyltransferase+ T cells that release acetylcholine, the cognate ligand for alpha7 nicotinic acetylcholine subunit-containing receptors (α7nAChR), and suppress TNF release in macrophages. Here, we observed that electrical vagus nerve stimulation with a duration of 0.1-60 s significantly reduced systemic TNF release in experimental endotoxemia. This suppression of TNF was sustained for more than 24 h, but abolished in mice deficient in the α7nAChR subunit. Exposure of primary human macrophages and murine RAW 264.7 macrophage-like cells to selective ligands for α7nAChR for 1 h in vitro attenuated TNF production for up to 24 h in response to endotoxin. Pharmacological inhibition of adenylyl cyclase (AC) and knockdown of adenylyl cyclase 6 (AC6) or c-FOS abolished cholinergic suppression of endotoxin-induced TNF release. These findings indicate that action potentials in the inflammatory reflex trigger a change in macrophage behavior that requires AC and phosphorylation of the cAMP response element binding protein (CREB). These observations further our mechanistic understanding of neural regulation of inflammation and may have implications for development of bioelectronic medicine treatment of inflammatory diseases.


Subject(s)
Adenylyl Cyclases/metabolism , Inflammation/metabolism , Reflex/physiology , Tumor Necrosis Factors/metabolism , Animals , CREB-Binding Protein/metabolism , Cell Line , Endotoxins/metabolism , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , RAW 264.7 Cells , Rats , Rats, Sprague-Dawley , Spleen/metabolism , Vagus Nerve/metabolism , alpha7 Nicotinic Acetylcholine Receptor/metabolism
3.
Mol Med ; 22: 585-596, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27341452

ABSTRACT

Type 1 diabetes mellitus (T1D) is a chronic autoimmune disease characterized by beta cell destruction, insulin deficiency and hyperglycemia. Activated macrophages and autoimmune T cells play a crucial role in the pathogenesis of hyperglycemia in NOD murine diabetes models, but the molecular mechanisms of macrophage activation are unknown. We recently identified pigment epithelium-derived factor (PEDF) as an adipocyte-derived factor that activates macrophages and mediates insulin resistance. Reasoning that PEDF might participate as a proinflammatory mediator in murine diabetes, we measured PEDF levels in NOD mice. PEDF levels are significantly elevated in pancreas, in correlation with pancreatic TNF levels in NOD mice. To identify experimental therapeutics, we screened 2,327 compounds in two chemical libraries (the NIH Clinical Collection and Pharmakon-1600a) for leads that inhibit PEDF mediated TNF release in macrophage cultures. The lead molecule selected, "emetine" is a widely used emetic. It inhibited PEDF-mediated macrophage activation with an EC50 or 146 nM. Administration of emetine to NOD mice and to C57Bl6 mice subjected to streptozotocin significantly attenuated hyperglycemia, reduced TNF levels in pancreas, and attenuated insulitis. Together, these results suggest that targeting PEDF with emetine may attenuate TNF release and hyperglycemia in murine diabetes models. This suggests that further investigation of PEDF and emetine in the pathogenesis of human diabetes is warranted.

4.
Mol Med ; 21(1): 702-708, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26322849

ABSTRACT

Type 1 diabetes in mice is characterized by autoimmune destruction of insulin-producing pancreatic ß-cells. Disease pathogenesis involves invasion of pancreatic islets by immune cells, including macrophages and T cells, and production of antibodies to self-antigens, including insulin. Activation of the inflammatory reflex, the neural circuit that inhibits inflammation, culminates on cholinergic receptor signals on immune cells to attenuate cytokine release and inhibit B-cell antibody production. Here, we show that galantamine, a centrally acting acetylcholinesterase inhibitor and an activator of the inflammatory reflex, attenuates murine experimental type 1 diabetes. Administration of galantamine to animals immunized with keyhole limpet hemocyanin (KLH) significantly suppressed splenocyte release of immunoglobulin G (IgG) and interleukin (IL)-4 and IL-6 during KLH challenge ex vivo. Administration of galantamine beginning at 1 month of age in nonobese diabetic (NOD) mice significantly delayed the onset of hyperglycemia, attenuated immune cell infiltration in pancreatic islets and decreased anti-insulin antibodies in serum. These observations indicate that galantamine attenuates experimental type 1 diabetes in mice and suggest that activation of the inflammatory reflex should be further studied as a potential therapeutic approach.

5.
Mol Med ; 18: 1161-8, 2012 Oct 24.
Article in English | MEDLINE | ID: mdl-22714715

ABSTRACT

Obesity is a major risk factor for insulin resistance, type 2 diabetes mellitus and cardiovascular disease. The pathophysiology of obesity is associated with chronic low-grade inflammation. Adipose tissue in obesity is significantly infiltrated by macrophages that secrete cytokines. The mechanisms of interaction between macrophages and adipocytes, leading to macrophage activation and increased cytokine release, remain to be elucidated. We reasoned that an adipocyte-derived factor might stimulate activation of macrophages. We have identified pigment epithelium-derived factor (PEDF) as a mediator of inflammation that is secreted by adipocytes and mediates macrophage activation. Recombinant PEDF activates macrophages to release tumor necrosis factor (TNF) and interleukin-1 (IL-1). The PEDF receptor adipose triglyceride lipase (ATGL) is required for PEDF-mediated macrophage activation. Selective inhibition of ATGL on macrophages attenuates PEDF-induced TNF production, and PEDF enhances the phosphorylation of p38 and extracellular signal-regulated kinase 1/2 mitogen-activated protein kinases. PEDF administration to rats results in increased serum TNF levels, and insulin resistance. Together, these findings suggest that PEDF secreted by adipocytes contributes to the onset and maintenance of chronic inflammation in obesity, and may be a therapeutic target in ameliorating insulin resistance.


Subject(s)
Adipocytes/metabolism , Eye Proteins/metabolism , Inflammation Mediators/metabolism , Nerve Growth Factors/metabolism , Serpins/metabolism , 3T3-L1 Cells , Adipocytes/drug effects , Animals , Eye Proteins/administration & dosage , Eye Proteins/pharmacology , Humans , Inflammation/pathology , Insulin Resistance , Lipase/metabolism , Macrophage Activation/drug effects , Macrophages/drug effects , Macrophages/metabolism , Male , Mice , Nerve Growth Factors/administration & dosage , Nerve Growth Factors/pharmacology , Rats , Rats, Sprague-Dawley , Serpins/administration & dosage , Serpins/pharmacology , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/biosynthesis , Tumor Necrosis Factor-alpha/metabolism
6.
Mol Med ; 17(7-8): 599-606, 2011.
Article in English | MEDLINE | ID: mdl-21738953

ABSTRACT

Obesity, a serious and growing health threat, is associated with low-grade inflammation that plays a role in mediating its adverse consequences. Previously, we have discovered a role for neural cholinergic signaling in controlling inflammation, and demonstrated that the cholinergic agent galantamine suppresses excessive proinflammatory cytokine release. The main objective of this study was to examine the efficacy of galantamine, a clinically-approved drug, in alleviating obesity-related inflammation and associated complications. After 8 wks on a high-fat diet, C57BL/6J mice were treated with either galantamine (4 mg/kg, intraperitoneally [i.p.]) or saline for 4 wks in parallel with mice on a low-fat diet and treated with saline. Galantamine treatment of obese mice significantly reduced body weight, food intake, abdominal adiposity, plasma cytokine and adipokine levels, and significantly improved blood glucose, insulin resistance and hepatic steatosis. In addition, galantamine alleviated impaired insulin sensitivity and glucose intolerance significantly. These results indicate a previously unrecognized potential of galantamine in alleviating obesity, inflammation and other obesity-related complications in mice. These findings are of interest for studying the efficacy of this clinically-approved drug in the context of human obesity and metabolic syndrome.


Subject(s)
Diet, High-Fat/adverse effects , Galantamine/pharmacology , Inflammation/prevention & control , Obesity/prevention & control , Adipokines/blood , Adiposity/drug effects , Animals , Blood Glucose/metabolism , Body Weight/drug effects , Cholesterol/blood , Cholinesterase Inhibitors/pharmacology , Cytokines/blood , Eating/drug effects , Fasting/blood , Fatty Liver/etiology , Fatty Liver/prevention & control , Inflammation/blood , Inflammation/etiology , Insulin/blood , Male , Mice , Mice, Inbred C57BL , Obesity/blood , Obesity/etiology , Resistin/blood , Time Factors , Treatment Outcome , Weight Gain/drug effects
7.
Mol Med ; 14(9-10): 567-74, 2008.
Article in English | MEDLINE | ID: mdl-18584048

ABSTRACT

The alpha7 subunit-containing nicotinic acetylcholine receptor (alpha7nAChR) is an essential component in the vagus nerve-based cholinergic anti-inflammatory pathway that regulates the levels of TNF, high mobility group box 1 (HMGB1), and other cytokines during inflammation. Choline is an essential nutrient, a cell membrane constituent, a precursor in the biosynthesis of acetylcholine, and a selective natural alpha7nAChR agonist. Here, we studied the anti-inflammatory potential of choline in murine endotoxemia and sepsis, and the role of the alpha7nAChR in mediating the suppressive effect of choline on TNF release. Choline (0.1-50 mM) dose-dependently suppressed TNF release from endotoxin-activated RAW macrophage-like cells, and this effect was associated with significant inhibition of NF-kappaB activation. Choline (50 mg/kg, intraperitoneally [i.p.]) treatment prior to endotoxin administration in mice significantly reduced systemic TNF levels. In contrast to its TNF suppressive effect in wild type mice, choline (50 mg/kg, i.p.) failed to inhibit systemic TNF levels in alpha7nAChR knockout mice during endotoxemia. Choline also failed to suppress TNF release from endotoxin-activated peritoneal macrophages isolated from alpha7nAChR knockout mice. Choline treatment prior to endotoxin resulted in a significantly improved survival rate as compared with saline-treated endotoxemic controls. Choline also suppressed HMGB1 release in vitro and in vivo, and choline treatment initiated 24 h after cecal ligation and puncture (CLP)-induced polymicrobial sepsis significantly improved survival in mice. In addition, choline suppressed TNF release from endotoxin-activated human whole blood and macrophages. Collectively, these data characterize the anti-inflammatory efficacy of choline and demonstrate that the modulation of TNF release by choline requires alpha7nAChR-mediated signaling.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Choline/pharmacology , Choline/physiology , Macrophages/metabolism , Receptors, Nicotinic/metabolism , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism , Animals , Cell Line , Cells, Cultured , Endotoxemia/drug therapy , Endotoxemia/immunology , Endotoxemia/metabolism , Endotoxemia/mortality , Endotoxins/immunology , Female , Gene Expression Regulation , HMGB1 Protein/metabolism , Humans , Macrophages/drug effects , Macrophages/immunology , Macrophages, Peritoneal/immunology , Macrophages, Peritoneal/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Receptors, Nicotinic/genetics , Sepsis/drug therapy , Sepsis/immunology , Sepsis/metabolism , Sepsis/mortality , alpha7 Nicotinic Acetylcholine Receptor
SELECTION OF CITATIONS
SEARCH DETAIL
...