Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
BMC Ecol Evol ; 22(1): 135, 2022 11 17.
Article in English | MEDLINE | ID: mdl-36397002

ABSTRACT

BACKGROUND: Land-use is a major driver of changes in biodiversity worldwide, but studies have overwhelmingly focused on above-ground taxa: the effects on soil biodiversity are less well known, despite the importance of soil organisms in ecosystem functioning. We modelled data from a global biodiversity database to compare how the abundance of soil-dwelling and above-ground organisms responded to land use and soil properties. RESULTS: We found that land use affects overall abundance differently in soil and above-ground assemblages. The abundance of soil organisms was markedly lower in cropland and plantation habitats than in primary vegetation and pasture. Soil properties influenced the abundance of soil biota in ways that differed among land uses, suggesting they shape both abundance and its response to land use. CONCLUSIONS: Our results caution against assuming models or indicators derived from above-ground data can apply to soil assemblages and highlight the potential value of incorporating soil properties into biodiversity models.


Subject(s)
Ecosystem , Soil , Biodiversity , Soil Microbiology , Biota
2.
PLoS Biol ; 16(12): e2006841, 2018 12.
Article in English | MEDLINE | ID: mdl-30513079

ABSTRACT

Human use of the land (for agriculture and settlements) has a substantial negative effect on biodiversity globally. However, not all species are adversely affected by land use, and indeed, some benefit from the creation of novel habitat. Geographically rare species may be more negatively affected by land use than widespread species, but data limitations have so far prevented global multi-clade assessments of land-use effects on narrow-ranged and widespread species. We analyse a large, global database to show consistent differences in assemblage composition. Compared with natural habitat, assemblages in disturbed habitats have more widespread species on average, especially in urban areas and the tropics. All else being equal, this result means that human land use is homogenizing assemblage composition across space. Disturbed habitats show both reduced abundances of narrow-ranged species and increased abundances of widespread species. Our results are very important for biodiversity conservation because narrow-ranged species are typically at higher risk of extinction than widespread species. Furthermore, the shift to more widespread species may also affect ecosystem functioning by reducing both the contribution of rare species and the diversity of species' responses to environmental changes among local assemblages.


Subject(s)
Agriculture/methods , Biodiversity , Conservation of Natural Resources/methods , Animals , Ecosystem , Humans , Natural Resources
3.
Ecol Evol ; 7(1): 145-188, 2017 01.
Article in English | MEDLINE | ID: mdl-28070282

ABSTRACT

The PREDICTS project-Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)-has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and make freely available this 2016 release of the database, containing more than 3.2 million records sampled at over 26,000 locations and representing over 47,000 species. We outline how the database can help in answering a range of questions in ecology and conservation biology. To our knowledge, this is the largest and most geographically and taxonomically representative database of spatial comparisons of biodiversity that has been collated to date; it will be useful to researchers and international efforts wishing to model and understand the global status of biodiversity.

4.
Nat Commun ; 7: 12306, 2016 07 28.
Article in English | MEDLINE | ID: mdl-27465407

ABSTRACT

Protected areas are widely considered essential for biodiversity conservation. However, few global studies have demonstrated that protection benefits a broad range of species. Here, using a new global biodiversity database with unprecedented geographic and taxonomic coverage, we compare four biodiversity measures at sites sampled in multiple land uses inside and outside protected areas. Globally, species richness is 10.6% higher and abundance 14.5% higher in samples taken inside protected areas compared with samples taken outside, but neither rarefaction-based richness nor endemicity differ significantly. Importantly, we show that the positive effects of protection are mostly attributable to differences in land use between protected and unprotected sites. Nonetheless, even within some human-dominated land uses, species richness and abundance are higher in protected sites. Our results reinforce the global importance of protected areas but suggest that protection does not consistently benefit species with small ranges or increase the variety of ecological niches.


Subject(s)
Biodiversity , Conservation of Natural Resources , Animals
5.
Science ; 353(6296): 288-91, 2016 Jul 15.
Article in English | MEDLINE | ID: mdl-27418509

ABSTRACT

Land use and related pressures have reduced local terrestrial biodiversity, but it is unclear how the magnitude of change relates to the recently proposed planetary boundary ("safe limit"). We estimate that land use and related pressures have already reduced local biodiversity intactness--the average proportion of natural biodiversity remaining in local ecosystems--beyond its recently proposed planetary boundary across 58.1% of the world's land surface, where 71.4% of the human population live. Biodiversity intactness within most biomes (especially grassland biomes), most biodiversity hotspots, and even some wilderness areas is inferred to be beyond the boundary. Such widespread transgression of safe limits suggests that biodiversity loss, if unchecked, will undermine efforts toward long-term sustainable development.


Subject(s)
Biodiversity , Conservation of Natural Resources , Grassland , Humans , Population Dynamics , Pressure
6.
Ecol Evol ; 6(9): 3040-55, 2016 May.
Article in English | MEDLINE | ID: mdl-27069595

ABSTRACT

Land-use change is one of the biggest threats to biodiversity globally. The effects of land use on biodiversity manifest primarily at local scales which are not captured by the coarse spatial grain of current global land-use mapping. Assessments of land-use impacts on biodiversity across large spatial extents require data at a similar spatial grain to the ecological processes they are assessing. Here, we develop a method for statistically downscaling mapped land-use data that combines generalized additive modeling and constrained optimization. This method was applied to the 0.5° Land-use Harmonization data for the year 2005 to produce global 30″ (approx. 1 km(2)) estimates of five land-use classes: primary habitat, secondary habitat, cropland, pasture, and urban. The original dataset was partitioned into 61 bio-realms (unique combinations of biome and biogeographical realm) and downscaled using relationships with fine-grained climate, land cover, landform, and anthropogenic influence layers. The downscaled land-use data were validated using the PREDICTS database and the geoWiki global cropland dataset. Application of the new method to all 61 bio-realms produced global fine-grained layers from the 2005 time step of the Land-use Harmonization dataset. Coarse-scaled proportions of land use estimated from these data compared well with those estimated in the original datasets (mean R (2): 0.68 ± 0.19). Validation with the PREDICTS database showed the new downscaled land-use layers improved discrimination of all five classes at PREDICTS sites (P < 0.0001 in all cases). Additional validation of the downscaled cropping layer with the geoWiki layer showed an R (2) improvement of 0.12 compared with the Land-use Harmonization data. The downscaling method presented here produced the first global land-use dataset at a spatial grain relevant to ecological processes that drive changes in biodiversity over space and time. Integrating these data with biodiversity measures will enable the reporting of land-use impacts on biodiversity at a finer resolution than previously possible. Furthermore, the general method presented here could be useful to others wishing to downscale similarly constrained coarse-resolution data for other environmental variables.

7.
PLoS One ; 10(11): e0143402, 2015.
Article in English | MEDLINE | ID: mdl-26599208

ABSTRACT

The world's natural history collections constitute an enormous evidence base for scientific research on the natural world. To facilitate these studies and improve access to collections, many organisations are embarking on major programmes of digitization. This requires automated approaches to mass-digitization that support rapid imaging of specimens and associated data capture, in order to process the tens of millions of specimens common to most natural history collections. In this paper we present Inselect-a modular, easy-to-use, cross-platform suite of open-source software tools that supports the semi-automated processing of specimen images generated by natural history digitization programmes. The software is made up of a Windows, Mac OS X, and Linux desktop application, together with command-line tools that are designed for unattended operation on batches of images. Blending image visualisation algorithms that automatically recognise specimens together with workflows to support post-processing tasks such as barcode reading, label transcription and metadata capture, Inselect fills a critical gap to increase the rate of specimen digitization.


Subject(s)
Image Processing, Computer-Assisted/methods , Insecta/physiology , Microscopy/methods , Natural History/methods , Algorithms , Animals , Automation , Computer Graphics , Information Storage and Retrieval , Moths , Museums , Software
8.
Nature ; 520(7545): 45-50, 2015 Apr 02.
Article in English | MEDLINE | ID: mdl-25832402

ABSTRACT

Human activities, especially conversion and degradation of habitats, are causing global biodiversity declines. How local ecological assemblages are responding is less clear--a concern given their importance for many ecosystem functions and services. We analysed a terrestrial assemblage database of unprecedented geographic and taxonomic coverage to quantify local biodiversity responses to land use and related changes. Here we show that in the worst-affected habitats, these pressures reduce within-sample species richness by an average of 76.5%, total abundance by 39.5% and rarefaction-based richness by 40.3%. We estimate that, globally, these pressures have already slightly reduced average within-sample richness (by 13.6%), total abundance (10.7%) and rarefaction-based richness (8.1%), with changes showing marked spatial variation. Rapid further losses are predicted under a business-as-usual land-use scenario; within-sample richness is projected to fall by a further 3.4% globally by 2100, with losses concentrated in biodiverse but economically poor countries. Strong mitigation can deliver much more positive biodiversity changes (up to a 1.9% average increase) that are less strongly related to countries' socioeconomic status.


Subject(s)
Biodiversity , Human Activities , Animals , Conservation of Natural Resources/trends , Ecology/trends , History, 16th Century , History, 17th Century , History, 18th Century , History, 19th Century , History, 20th Century , History, 21st Century , Models, Biological , Population Dynamics , Species Specificity
9.
J Appl Ecol ; 52(6): 1567-1577, 2015 12.
Article in English | MEDLINE | ID: mdl-27546902

ABSTRACT

Bees are a functionally important and economically valuable group, but are threatened by land-use conversion and intensification. Such pressures are not expected to affect all species identically; rather, they are likely to be mediated by the species' ecological traits.Understanding which types of species are most vulnerable under which land uses is an important step towards effective conservation planning.We collated occurrence and abundance data for 257 bee species at 1584 European sites from surveys reported in 30 published papers (70 056 records) and combined them with species-level ecological trait data. We used mixed-effects models to assess the importance of land use (land-use class, agricultural use-intensity and a remotely-sensed measure of vegetation), traits and trait × land-use interactions, in explaining species occurrence and abundance.Species' sensitivity to land use was most strongly influenced by flight season duration and foraging range, but also by niche breadth, reproductive strategy and phenology, with effects that differed among cropland, pastoral and urban habitats. Synthesis and applications. Rather than targeting particular species or settings, conservation actions may be more effective if focused on mitigating situations where species' traits strongly and negatively interact with land-use pressures. We find evidence that low-intensity agriculture can maintain relatively diverse bee communities; in more intensive settings, added floral resources may be beneficial, but will require careful placement with respect to foraging ranges of smaller bee species. Protection of semi-natural habitats is essential, however; in particular, conversion to urban environments could have severe effects on bee diversity and pollination services. Our results highlight the importance of exploring how ecological traits mediate species responses to human impacts, but further research is needed to enhance the predictive ability of such analyses.

10.
Proc Biol Sci ; 281(1792)2014 Oct 07.
Article in English | MEDLINE | ID: mdl-25143038

ABSTRACT

Habitat loss and degradation, driven largely by agricultural expansion and intensification, present the greatest immediate threat to biodiversity. Tropical forests harbour among the highest levels of terrestrial species diversity and are likely to experience rapid land-use change in the coming decades. Synthetic analyses of observed responses of species are useful for quantifying how land use affects biodiversity and for predicting outcomes under land-use scenarios. Previous applications of this approach have typically focused on individual taxonomic groups, analysing the average response of the whole community to changes in land use. Here, we incorporate quantitative remotely sensed data about habitats in, to our knowledge, the first worldwide synthetic analysis of how individual species in four major taxonomic groups--invertebrates, 'herptiles' (reptiles and amphibians), mammals and birds--respond to multiple human pressures in tropical and sub-tropical forests. We show significant independent impacts of land use, human vegetation offtake, forest cover and human population density on both occurrence and abundance of species, highlighting the value of analysing multiple explanatory variables simultaneously. Responses differ among the four groups considered, and--within birds and mammals--between habitat specialists and habitat generalists and between narrow-ranged and wide-ranged species.


Subject(s)
Biodiversity , Forests , Models, Theoretical , Tropical Climate , Agriculture/methods , Animals , Ecosystem , Humans , Population Density , Satellite Imagery
11.
Ecol Evol ; 4(24): 4658-68, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25558360

ABSTRACT

Remotely sensed data - available at medium to high resolution across global spatial and temporal scales - are a valuable resource for ecologists. In particular, products from NASA's MODerate-resolution Imaging Spectroradiometer (MODIS), providing twice-daily global coverage, have been widely used for ecological applications. We present MODISTools, an R package designed to improve the accessing, downloading, and processing of remotely sensed MODIS data. MODISTools automates the process of data downloading and processing from any number of locations, time periods, and MODIS products. This automation reduces the risk of human error, and the researcher effort required compared to manual per-location downloads. The package will be particularly useful for ecological studies that include multiple sites, such as meta-analyses, observation networks, and globally distributed experiments. We give examples of the simple, reproducible workflow that MODISTools provides and of the checks that are carried out in the process. The end product is in a format that is amenable to statistical modeling. We analyzed the relationship between species richness across multiple higher taxa observed at 526 sites in temperate forests and vegetation indices, measures of aboveground net primary productivity. We downloaded MODIS derived vegetation index time series for each location where the species richness had been sampled, and summarized the data into three measures: maximum time-series value, temporal mean, and temporal variability. On average, species richness covaried positively with our vegetation index measures. Different higher taxa show different positive relationships with vegetation indices. Models had high R (2) values, suggesting higher taxon identity and a gradient of vegetation index together explain most of the variation in species richness in our data. MODISTools can be used on Windows, Mac, and Linux platforms, and is available from CRAN and GitHub (https://github.com/seantuck12/MODISTools).

12.
Ecol Evol ; 4(24): 4701-35, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25558364

ABSTRACT

Biodiversity continues to decline in the face of increasing anthropogenic pressures such as habitat destruction, exploitation, pollution and introduction of alien species. Existing global databases of species' threat status or population time series are dominated by charismatic species. The collation of datasets with broad taxonomic and biogeographic extents, and that support computation of a range of biodiversity indicators, is necessary to enable better understanding of historical declines and to project - and avert - future declines. We describe and assess a new database of more than 1.6 million samples from 78 countries representing over 28,000 species, collated from existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from terrestrial sites around the world. The database contains measurements taken in 208 (of 814) ecoregions, 13 (of 14) biomes, 25 (of 35) biodiversity hotspots and 16 (of 17) megadiverse countries. The database contains more than 1% of the total number of all species described, and more than 1% of the described species within many taxonomic groups - including flowering plants, gymnosperms, birds, mammals, reptiles, amphibians, beetles, lepidopterans and hymenopterans. The dataset, which is still being added to, is therefore already considerably larger and more representative than those used by previous quantitative models of biodiversity trends and responses. The database is being assembled as part of the PREDICTS project (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems - http://www.predicts.org.uk). We make site-level summary data available alongside this article. The full database will be publicly available in 2015.

13.
Proc Biol Sci ; 280(1770): 20131901, 2013 Nov 07.
Article in English | MEDLINE | ID: mdl-24026824

ABSTRACT

A major goal of ecology is to discover how dynamics and structure of multi-trophic ecological communities are related. This is difficult, because whole-community data are limited and typically comprise only a snapshot of a community instead of a time series of dynamics, and mathematical models of complex system dynamics have a large number of unmeasured parameters and therefore have been only tenuously related to real systems. These are related problems, because long time-series, if they were commonly available, would enable inference of parameters. The resulting 'plague of parameters' means most studies of multi-species population dynamics have been very theoretical. Dynamical models parametrized using physiological allometries may offer a partial cure for the plague of parameters, and these models are increasingly used in theoretical studies. However, physiological allometries cannot determine all parameters, and the models have also rarely been directly tested against data. We confronted a model of community dynamics with data from a lake community. Many important empirical patterns were reproducible as outcomes of dynamics, and were not reproducible when parameters did not follow physiological allometries. Results validate the usefulness, when parameters follow physiological allometries, of classic differential-equation models for understanding whole-community dynamics and the structure-dynamics relationship.


Subject(s)
Biota , Ecology/methods , Models, Biological , Animals , Lakes , Michigan , Population Dynamics
14.
J Anim Ecol ; 82(5): 1009-20, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23701213

ABSTRACT

1. The power-law dependence of metabolic rate on body mass has major implications at every level of ecological organization. However, the overwhelming majority of studies examining this relationship have used basal or resting metabolic rates, and/or have used data consisting of species-averaged masses and metabolic rates. Field metabolic rates are more ecologically relevant and are probably more directly subject to natural selection than basal rates. Individual rates might be more important than species-average rates in determining the outcome of ecological interactions, and hence selection. 2. We here provide the first comprehensive database of published field metabolic rates and body masses of individual birds and mammals, containing measurements of 1498 animals of 133 species in 28 orders. We used linear mixed-effects models to answer questions about the body mass scaling of metabolic rate and its taxonomic universality/heterogeneity that have become classic areas of controversy. Our statistical approach allows mean scaling exponents and taxonomic heterogeneity in scaling to be analysed in a unified way while simultaneously accounting for nonindependence in the data due to shared evolutionary history of related species. 3. The mean power-law scaling exponents of metabolic rate vs. body mass relationships were 0.71 [95% confidence intervals (CI) 0.625-0.795] for birds and 0.64 (95% CI 0.564-0.716) for mammals. However, these central tendencies obscured meaningful taxonomic heterogeneity in scaling exponents. The primary taxonomic level at which heterogeneity occurred was the order level. Substantial heterogeneity also occurred at the species level, a fact that cannot be revealed by species-averaged data sets used in prior work. Variability in scaling exponents at both order and species levels was comparable to or exceeded the differences 3/4-2/3 = 1/12 and 0.71-0.64. 4. Results are interpreted in the light of a variety of existing theories. In particular, results are consistent with the heat dissipation theory of Speakman & Król (2010) and provided some support for the metabolic levels boundary hypothesis of Glazier (2010). 5. Our analysis provides the first comprehensive empirical analysis of the scaling relationship between field metabolic rate and body mass in individual birds and mammals. Our data set is a valuable contribution to those interested in theories of the allometry of metabolic rates.


Subject(s)
Birds/metabolism , Body Weight/physiology , Energy Metabolism/physiology , Mammals/metabolism , Animals , Biological Evolution , Body Temperature Regulation , Classification , Databases, Factual , Models, Biological
15.
Philos Trans R Soc Lond B Biol Sci ; 367(1605): 2990-7, 2012 Nov 05.
Article in English | MEDLINE | ID: mdl-23007087

ABSTRACT

Experimental data from intergenerational field manipulations of entire food webs are scarce, yet such approaches are essential for gauging impacts of environmental change in natural systems. We imposed 2 years of intermittent drought on stream channels in a replicated field trial, to measure food web responses to simulated climate change. Drought triggered widespread losses of species and links, with larger taxa and those that were rare for their size, many of which were predatory, being especially vulnerable. Many network properties, including size-scaling relationships within food chains, changed in response to drought. Other properties, such as connectance, were unaffected. These findings highlight the need for detailed experimental data from different organizational levels, from pairwise links to the entire food web. The loss of not only large species, but also those that were rare for their size, provides a newly refined way to gauge likely impacts that may be applied more generally to other systems and/or impacts.


Subject(s)
Body Weight , Climate Change , Food Chain , Animals , Biomass , Body Size , Computational Biology/methods , Computer Simulation , Droughts , Logistic Models , Population Density , Population Dynamics , Predatory Behavior
SELECTION OF CITATIONS
SEARCH DETAIL
...