Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharmacol Exp Ther ; 313(3): 1263-71, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15761110

ABSTRACT

The CXC chemokine receptor 3 (CXCR3) is predominantly expressed on T helper type 1 (Th1) cells that are involved in inflammatory diseases. The three CXCR3 ligands CXCL9, CXCL10, and CXCL11 are produced at sites of inflammation and elicit migration of pathological Th1 cells. Here, we are the first to characterize the pharmacological potencies and specificity of a CXCR3 antagonist, N-1R-[3-(4-ethoxy-phenyl)-4-oxo-3,4-dihydro-pyrido[2,3-d]pyrimidin-2-yl]-ethyl-N-pyridin-3-ylmethyl-2-(4-fluoro-3-trifluoromethyl-phenyl)-acetamide (NBI-74330), from the T487 small molecule series. NBI-74330 demonstrated potent inhibition of [(125)I]CXCL10 and [(125)I]CXCL11 specific binding (K(i) of 1.5 and 3.2 nM, respectively) and of functional responses mediated by CXCR3, such as ligand-induced guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPgammaS) binding, calcium mobilization, and cellular chemotaxis (IC(50) of 7 to 18 nM). NBI-74330 was selective for CXCR3 because it showed no significant inhibition of chemotactic responses to other chemokines and did not inhibit radioligand binding to a panel of nonchemokine G-protein coupled receptors. There was a striking difference in potencies among the three CXCR3 ligands, with CXCL11 >> CXCL10 > CXCL9. A comparison of the rank order of K(i) values with the rank order of monocyte production levels of these three ligands revealed a precise inverse correlation, suggesting that the weaker receptor affinities of CXCL9 and CXCL10 were physiologically compensated for by an elevated expression, perhaps to maintain effectiveness of each ligand under physiological conditions.


Subject(s)
Acetamides/pharmacology , Chemokines, CXC/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Pyrimidines/pharmacology , Receptors, Chemokine/antagonists & inhibitors , Receptors, Chemokine/metabolism , Acetamides/metabolism , Cell Line, Tumor , Chemokine CXCL10 , Chemokine CXCL11 , Chemokine CXCL9 , Guanosine 5'-O-(3-Thiotriphosphate)/metabolism , Humans , Ligands , Pyrimidines/metabolism , Receptors, CXCR3
2.
J Pharmacol Toxicol Methods ; 51(2): 105-14, 2005.
Article in English | MEDLINE | ID: mdl-15767203

ABSTRACT

INTRODUCTION: Higher-throughput chemotaxis assays have had limited use in chemokine receptor pharmacology studies mainly because of the unavailability of optimal assay formats in addition to an incompatibility of chemotactic cell backgrounds with other pharmacological assays. Here, we developed a high-throughput 96-well chemotaxis assay for leukocytic cell lines and identified the human U937 monocytic line as an excellent cell background for both chemotaxis and the high-throughput calcium mobilization Fluorescent Imaging Plate Reader (FLIPR) assay. METHODS: Optimal chemotactic conditions were developed using the Neuroprobe MBA96 nondisposable and the Millipore MultiScreen-MIC disposable apparatuses with responses to CXC chemokine receptor (CXCR)-4 endogenously expressed on the human H9 T lymphoma line, and confirmed with Jurkat T cell and U937 monocytic cell lines. RESULTS: The U937 cell line was chosen for site-directed mutagenesis studies with CC chemokine receptor (CCR)-7 because this cell line did not endogenously express this receptor, it demonstrated a good chemotaxis index, and it showed an exceptional ability to mobilize calcium measured via FLIPR. Using the Millipore MultiScreen-MIC and FLIPR assays, alanine substitutions at K130 and Q227 caused threefold shifts in potency for the CCR7 ligand, CCL19, whereas that at K137 had no effect. DISCUSSION: Because these CCR7 mutations have previously been shown not to affect ligand binding, our results here show that these residues are specifically involved in receptor activation signals critical to chemotaxis and underscore the importance of using the U937 cell background to confirm results of chemotaxis with those of the FLIPR assay.


Subject(s)
Chemokines, CXC/pharmacology , Chemotaxis, Leukocyte/drug effects , Monocytes/drug effects , Receptors, Chemokine/physiology , T-Lymphocytes/metabolism , Amino Acid Sequence , Calcium/metabolism , Cell Line, Tumor , Chemokines, CXC/metabolism , Dose-Response Relationship, Drug , Flow Cytometry , Fluorometry , Humans , Image Processing, Computer-Assisted , Jurkat Cells , Kinetics , Ligands , Monocytes/cytology , Point Mutation , Receptors, Chemokine/chemistry , Receptors, Chemokine/genetics , Reproducibility of Results , U937 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...