Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Virology ; 498: 181-191, 2016 11.
Article in English | MEDLINE | ID: mdl-27596537

ABSTRACT

The weak polyadenylation site (PAS) of Rous sarcoma virus (RSV) is activated by the juxtaposition of SR protein binding sites within the spatially separate negative regulator of splicing (NRS) element and the env RNA splicing enhancer (Env enhancer), which are far upstream of the PAS. Juxtaposition occurs by formation of the NRS - 3' ss splicing regulatory complex and is thought to provide a threshold of SR proteins that facilitate long-range stimulation of the PAS. We provide evidence for the threshold model by showing that greater than three synthetic SR protein binding sites are needed to substitute for the Env enhancer, that either the NRS or Env enhancer alone promotes polyadenylation when the distance to the PAS is decreased, and that SR protein binding sites promote binding of the polyadenylation factor cleavage factor I (CFIm) to the weak PAS. These observations may be relevant for cellular PASs.


Subject(s)
Polyadenylation , RNA, Messenger , RNA, Viral , RNA-Binding Proteins/metabolism , Rous sarcoma virus/genetics , Rous sarcoma virus/metabolism , mRNA Cleavage and Polyadenylation Factors/metabolism , Animals , Binding Sites , Cell Line , Gene Order , Open Reading Frames , Poly A , Protein Binding
2.
J Virol ; 85(21): 11351-60, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21849435

ABSTRACT

The Rous sarcoma virus (RSV) polyadenylation site (PAS) is very poorly used in vitro due to suboptimal upstream and downstream elements, and yet ∼85% of viral transcripts are polyadenylated in vivo. The mechanisms that orchestrate polyadenylation at the weak PAS are not completely understood. It was previously shown that serine-arginine (SR)-rich proteins stimulate RSV PAS use in vitro and in vivo. It has been proposed that viral RNA polyadenylation is stimulated through a nonproductive splice complex that forms between a pseudo 5' splice site (5'ss) within the negative regulator of splicing (NRS) and a downstream 3'ss, which repositions NRS-bound SR proteins closer to the viral PAS. This repositioning is thought to be important for long-distance poly(A) stimulation by the NRS. We report here that a 308-nucleotide deletion downstream of the env 3'ss decreased polyadenylation efficiency, suggesting the presence of an additional element required for optimal RSV polyadenylation. Mapping studies localized the poly(A) stimulating element to a region coincident with the Env splicing enhancer, which binds SR proteins, and inactivation of the enhancer and SR protein binding decreased polyadenylation efficiency. The positive effect of the Env enhancer on polyadenylation could be uncoupled from its role in splicing. As with the NRS, the Env enhancer also stimulated use of the viral PAS in vitro. These results suggest that a critical threshold of SR proteins, achieved by juxtaposition of SR protein binding sites within the NRS and Env enhancer, is required for long-range polyadenylation stimulation.


Subject(s)
Nuclear Proteins/metabolism , Polyadenylation , RNA, Messenger/metabolism , RNA, Viral/metabolism , RNA-Binding Proteins/metabolism , Rous sarcoma virus/physiology , Protein Binding , RNA, Viral/genetics , Sequence Deletion , Serine-Arginine Splicing Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...