Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Indian J Microbiol ; 62(4): 569-582, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36458217

ABSTRACT

The present study reports transcriptomic profiling of a Basidiomycota fungus, Podoscypha petalodes strain GGF6 belonging to the family Podoscyphaceae, isolated from the North-Western Himalayan ranges in Himachal Pradesh, India. Podoscypha petalodes strain GGF6 possesses significant biotechnological potential as it has been reported for endocellulase, laccase, and other lignocellulolytic enzymes under submerged fermentation conditions. The present study attempts to enhance our knowledge of its lignocellulolytic potential as no previous omics-based analysis is available for this white-rot fungus. The transcriptomic analysis of P. petalodes GGF6 reveals the presence of 280 CAZy proteins. Furthermore, bioprospecting transcriptome signatures in the fungi revealed a diverse array of proteins associated with cellulose, hemicellulose, pectin, and lignin degradation. Interestingly, two copper-dependent lytic polysaccharide monooxygenases (AA14) and one pyrroloquinolinequinone-dependent oxidoreductase (AA12) were also identified, which are known to help in the lignocellulosic plant biomass degradation. Overall, this transcriptome profiling-based study provides deeper molecular-level insights into this Basidiomycota fungi, P. petalodes, for its potential application in diverse biotechnological applications, not only in the biofuel industry but also in the environmental biodegradation of recalcitrant molecules. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-022-01037-6.

2.
J Med Virol ; 93(4): 2534-2537, 2021 04.
Article in English | MEDLINE | ID: mdl-33368386

ABSTRACT

With the exponential spread of the coronavirus disease 2019 (COVID-19) pandemic across the world within the 12 months, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains are continuously trying to adapt themselves to the host environment by random mutations. When doing so, some variants with evolutionary advantages such as better human to human transmissibility potential might get naturally selected. This short communication demonstrates how the mutation frequency patterns are evolving in 2457 SAR-CoV-2 strains isolated from COVID-19 patients across diverse Indian states. We have identified 19 such variants showing contrasting mutational probabilities in the span of 7 months. Out of these, 14 variants are showing increasing mutational probabilities suggesting their propagation with time due to their unexplored evolutionary advantages. However, the mutational probabilities of five variants have significantly decreased in June onward as compared to March/April, suggesting their termination with time. Further in-depth investigation of these identified variants will provide valuable knowledge about the evolution, infection strategies, transmission rates, and epidemiology of SARS-CoV-2.


Subject(s)
COVID-19/virology , Mutation , SARS-CoV-2/genetics , COVID-19/epidemiology , Evolution, Molecular , Genetic Variation , Genome, Viral , Humans , India/epidemiology , Pandemics
SELECTION OF CITATIONS
SEARCH DETAIL
...