Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Chem ; 101: 103988, 2020 08.
Article in English | MEDLINE | ID: mdl-32534346

ABSTRACT

Several novel series of hydroxamic acids bearing 2-benzamidooxazole/thiazole (5a-g, 6a-g) or 2-phenylsulfonamidothiazole (8a-c) were designed and synthesized. The compounds were obtained straightforwards via a two step pathway, starting from commercially available ethyl 2-aminooxazole-4-carboxylate or ethyl 2-aminothiazole-4-carboxylate. Biological evaluation showed that these hydroxamic acids generally exhibited good cytotoxicity against three human cancer cell lines (SW620, colon; PC-3, prostate; NCI-H23, lung cancer), with IC50 values in low micromolar range and comparable to that of SAHA. These compounds also comparably inhibited HDACs with IC50 values in sub-micromolar range (0.010-0.131 µM) and some compounds (e.g 5f, IC50, 0.010 µM) were even more potent than SAHA (IC50, 0.025 µM) in HDAC inhibition. Representative compounds 6a and 8a appeared to arrest the SW620 cell cycle at G2 phase and significantly induced both early and late apoptosis of SW620 colon cancer cells. Docking experiments on HDAC2 and HDAC6 isozymes revealed favorable interactions at the tunnel of the HDAC active site which positively contributed to the inhibitory activity of synthesized compound. The binding affinity predicted by docking program showed good correlation with the experimental IC50 values. This study demonstrates that simple 1,3-oxazole- and 1,3-thiazole-based hydroxamic acids are also promising as antitumor agents and HDAC inhibitors and these results should provide valuable information for further design of more potent HDAC inhibitors and antitumor agents.


Subject(s)
Antineoplastic Agents/pharmacology , Histone Deacetylase Inhibitors/pharmacology , Hydroxamic Acids/pharmacology , Oxazoles/chemistry , Thiazoles/chemistry , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Line, Tumor , Drug Screening Assays, Antitumor , Histone Deacetylase Inhibitors/chemistry , Humans , Hydroxamic Acids/chemistry , Molecular Docking Simulation , Spectrum Analysis/methods , Structure-Activity Relationship
2.
Med Chem ; 9(8): 1051-7, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23521008

ABSTRACT

Results from clinical studies have demonstrated that inhibitors of histone deacetylase (HDAC) enzymes possess promise for the treatment of several types of cancer. Zolinza(®) (widely known as SAHA) has been approved by the FDA for the treatment of T-cell lymphoma. As a continuity of our ongoing research to find novel small molecules to target these important enzymes, we synthesized a series of benzothiazole-containing analogues of SAHA and found several compounds with very potent anticancer cytotoxicity. In this study, three more compounds of this type, including N(1)-(6-chlorobenzo[d]thiazol-2-yl)-N(8)-hydroxyoctanediamide (3a), N(1)-[6-(trifluoromethyl)benzo[d]thiazol-2-yl]-N(8)-hydroxyoctanediamide (3b) and N(1)-(thiazol-2-yl)-N(8)-hydroxyoctanediamide (6) were synthesized and evaluated for HDAC inhibition and cytotoxic activities. All three compounds showed very potent HDAC inhibitory effects. Docking revealed that both two compounds 3a, 3b showed higher affinities towards HDAC(8) compared to SAHA. In vitro, compound 3a exhibited cytotoxicity equipotent to SAHA against five human cancer cell lines. In term of in vivo activity, compound 3a demonstrated equivalent efficacy to SAHA in mouse xenograft model.


Subject(s)
Antineoplastic Agents/pharmacology , Benzothiazoles/chemistry , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Hydroxamic Acids/pharmacology , Neoplasms, Experimental/drug therapy , Thiazoles/chemistry , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylase Inhibitors/chemistry , Humans , Hydroxamic Acids/chemical synthesis , Hydroxamic Acids/chemistry , MCF-7 Cells , Mice , Models, Molecular , Molecular Structure , Neoplasms, Experimental/pathology , Structure-Activity Relationship
3.
Bioorg Med Chem Lett ; 21(24): 7509-12, 2011 Dec 15.
Article in English | MEDLINE | ID: mdl-22036991

ABSTRACT

Data from clinical studies indicate that inhibitors of Class I and Class II histone deacetylase (HDAC) enzymes show great promise for the treatment of cancer. Zolinza (SAHA, Zolinza) was recently approved by the FDA for the treatment of the cutaneous manifestations of cutaneous T-cell lymphoma. As a part of our ongoing effort to identify novel small molecules to target these important enzymes, we have prepared two series of benzothiazole-containing analogues of SAHA. It was found that several compounds with 6C-bridge linking benzothiazole moiety and hydroxamic functional groups showed good inhibition against HDAC3 and 4 at as low as 1 µg/ml and exhibited potent cytotoxicity against five cancer cell lines with average IC(50) values of as low as 0.81 µg/ml, almost equipotent to SAHA.


Subject(s)
Antineoplastic Agents/chemistry , Benzothiazoles/chemistry , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylases/chemistry , Hydroxamic Acids/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Binding Sites , Cell Line, Tumor , Cell Survival/drug effects , Computer Simulation , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Humans , Hydroxamic Acids/chemical synthesis , Hydroxamic Acids/pharmacology , Protein Structure, Tertiary , Repressor Proteins/antagonists & inhibitors , Repressor Proteins/metabolism , Vorinostat
SELECTION OF CITATIONS
SEARCH DETAIL
...