Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 28(21): 3446-3453, 2018 11 15.
Article in English | MEDLINE | ID: mdl-30268701

ABSTRACT

A new series of (2S,3R,4R,5S,6R)-5-fluoro-6-(hydroxymethyl)-2-aryltetrahydro-2H-pyran-3,4-diols as dual inhibitors of sodium glucose co-transporter proteins (SGLTs) were disclosed. Two methods were developed to efficiently synthesize C5-fluoro-lactones 3 and 4, which are key intermediates to the C5-fluoro-hexose based C-aryl glucosides. Compound 2b demonstrated potent hSGLT1 and hSGLT2 inhibition (IC50 = 43 nM for SGLT1 and IC50 = 9 nM for SGLT2). It showed robust inhibition of blood glucose excursion in oral glucose tolerance test (OGTT) in Sprague Dawley (SD) rats and exerted pronounced antihyperglycemic effects in db/db mice and high-fat diet-fed ZDF rats when dosed orally at 10 mg/kg.


Subject(s)
Deoxyglucose/therapeutic use , Diabetes Mellitus, Experimental/drug therapy , Hypoglycemic Agents/therapeutic use , Sodium-Glucose Transporter 1/antagonists & inhibitors , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Administration, Oral , Animals , Blood Glucose/drug effects , Deoxyglucose/administration & dosage , Deoxyglucose/analogs & derivatives , Deoxyglucose/chemical synthesis , Drug Design , Humans , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/chemistry , Macaca fascicularis , Male , Mice , Microsomes, Liver/metabolism , Molecular Structure , Rats, Sprague-Dawley , Rats, Zucker , Sodium-Glucose Transporter 2/metabolism , Sodium-Glucose Transporter 2 Inhibitors/administration & dosage , Sodium-Glucose Transporter 2 Inhibitors/chemical synthesis , Sodium-Glucose Transporter 2 Inhibitors/chemistry , Structure-Activity Relationship
2.
Pharmacol Res Perspect ; 4(3): e00218, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27433338

ABSTRACT

Although much speculation has surrounded intestinally expressed FcRn as a means for systemic uptake of orally administered immunoglobulin G (IgG), this has not been validated in translational models beyond neonates or in FcRn-expressing cells in vitro. Recently, IgG1 intestinal infusion acutely in anesthetized cynomolgus resulted in detectable serum monoclonal antibody (mAb) levels. In this study, we show that IgG2 has greater protease resistance to intestinal enzymes in vitro and mice in vivo, due to protease resistance in the hinge region. An IgG2 mAb engineered for FcRn binding, was optimally formulated, lyophilized, and loaded into enteric-coated capsules for oral dosing in cynomolgus. Small intestinal pH 7.5 was selected for enteric delivery based on gastrointestinal pH profiling of cynomolgus by operator-assisted IntelliCap System(®). Milling of the lyophilized IgG2 M428L FcRn-binding variant after formulation in 10 mmol/L histidine, pH 5.7, 8.5% sucrose, 0.04% PS80 did not alter the physicochemical properties nor the molecular integrity compared to the batch released in PBS. Size 3 hard gel capsules (23.2 mg IgG2 M428L ~3 mg/kg) were coated with hydroxypropyl methylcellulose acetate succinate for rapid dissolution at pH 7.5 in small intestine and FcRn binding of encapsulated mAb confirmed. Initial capsule dosing by endoscopic delivery into the small intestine achieved 0.2 + 0.1 ng/mL (n = 5) peak at 24 h. Weekly oral capsule dosing for 6 weeks achieved levels of 0.4 + 0.2 ng/mL and, despite increasing the dose and frequency, remained below 1 ng/mL. In conclusion, lyophilized milled mAb retains FcRn binding and molecular integrity for small intestinal delivery. The low systemic exposure has demonstrated the limitations of intestinal FcRn in non-human primates and the unfeasibility of employing this for therapeutic levels of mAb. Local mAb delivery with limited systemic exposure may be sufficient as a therapeutic for intestinal diseases.

3.
Bioorg Med Chem Lett ; 22(16): 5303-7, 2012 Aug 15.
Article in English | MEDLINE | ID: mdl-22795627

ABSTRACT

Complement C1s protease inhibitors have potential utility in the treatment of diseases associated with activation of the classical complement pathway such as humorally mediated graft rejection, ischemia-reperfusion injury (IRI), vascular leak syndrome, and acute respiratory distress syndrome (ARDS). The utility of biphenylsulfonyl-thiophene-carboxamidine small-molecule C1s inhibitors are limited by their poor in vivo pharmacokinetic properties. Pegylation of a potent analog has provided compounds with good potency and good in vivo pharmacokinetic properties.


Subject(s)
Amides/chemistry , Complement C1s/antagonists & inhibitors , Drug Design , Polyethylene Glycols/chemistry , Protease Inhibitors/chemical synthesis , Thiophenes/chemistry , Animals , Complement C1s/metabolism , Half-Life , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacokinetics , Rats
4.
J Pharm Sci ; 98(5): 1877-84, 2009 May.
Article in English | MEDLINE | ID: mdl-18803263

ABSTRACT

Pharmacokinetic studies in mice traditionally require one animal per time point, resulting in dosing and euthanizing a large number of animals and producing suboptimal quality of pharmacokinetic data due to inter-animal variability and dosing error. These studies are time-consuming and labor-intensive. To improve the throughput and quality of pharmacokinetic evaluation in mice, we have developed a serial blood sampling methodology using the lateral saphenous vein puncture technique. Two marketed drugs, indinavir and rosuvastatin, were selected for this validation study because of their distinctly different physicochemical and pharmacokinetic properties. Each compound was dosed orally and intravenously in mice using both discrete and serial blood sampling methods. The pharmacokinetic results from serial bleeding are in excellent agreement with those from discrete sampling for both compounds. Compared to the discrete sampling, the serial sampling procedure is a more humane method, allowing for rapid and repeated sampling from the same site without the need for anesthesia. The application of this new method has led to a remarkable reduction in animal and compound usage, a significant increase in throughput and speed, and a drastic improvement in pharmacokinetic data quality. This approach is especially useful for the first-tier in vivo pharmacokinetic screening of discovery compounds.


Subject(s)
Biological Availability , Pharmaceutical Preparations/metabolism , Pharmacokinetics , 2-Hydroxypropyl-beta-cyclodextrin , Administration, Oral , Animals , Area Under Curve , Drug Design , Fluorobenzenes/administration & dosage , Fluorobenzenes/pharmacokinetics , HIV Protease Inhibitors/administration & dosage , HIV Protease Inhibitors/pharmacokinetics , Half-Life , Hydroxymethylglutaryl-CoA Reductase Inhibitors/administration & dosage , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacokinetics , Indinavir/administration & dosage , Indinavir/pharmacokinetics , Injections, Intravenous , Male , Mice , Pyrimidines/administration & dosage , Pyrimidines/pharmacokinetics , Reproducibility of Results , Rosuvastatin Calcium , Sulfonamides/administration & dosage , Sulfonamides/pharmacokinetics , beta-Cyclodextrins
5.
7.
Bioorg Med Chem Lett ; 15(7): 1857-61, 2005 Apr 01.
Article in English | MEDLINE | ID: mdl-15780621

ABSTRACT

Crystallographic analysis of ligands bound to HDM2 suggested that 7-substituted 1,4-diazepine-2,5-diones could mimic the alpha-helix of p53 peptide and may represent a promising scaffold to develop HDM2-p53 antagonists. To verify this hypothesis, we synthesized and biologically evaluated 5-[(3S)-3-(4-chlorophenyl)-4-[(R)-1-(4-chlorophenyl)ethyl]-2,5-dioxo-7-phenyl-1,4-diazepin-1-yl]valeric acid (10) and 5-[(3S)-7-(2-bromophenyl)-3-(4-chlorophenyl)-4-[(R)-1-(4-chlorophenyl)ethyl]-2,5-dioxo-1,4-diazepin-1-yl]valeric acid (11). Preliminary in vitro testing shows that 10 and 11 substantially antagonize the binding between HDM2 and p53 with an IC(50) of 13 and 3.6 microM, respectively, validating the modeling predictions. Taken together with the high cell permeability of diazepine 11 determined in CACO-2 cells, these results suggest that 1,4-diazepine-2,5-diones may be useful in the treatment of certain cancers.


Subject(s)
Antineoplastic Agents/pharmacology , Azepines/chemical synthesis , Nuclear Proteins/metabolism , Proto-Oncogene Proteins/metabolism , Azepines/pharmacology , Caco-2 Cells , Crystallography, X-Ray , Humans , Inhibitory Concentration 50 , Ligands , Nuclear Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins c-mdm2 , Structure-Activity Relationship , Tumor Cells, Cultured , Tumor Suppressor Protein p53/metabolism
8.
Curr Opin Drug Discov Devel ; 7(1): 69-74, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14982150

ABSTRACT

Pressure on drug discovery teams to predict the success of drug candidates earlier in the drug discovery process has led to the development of in vitro assays using human tissues, cells or fluids that aid chemists and biologists in their decision-making process. The use of human material is often related to the species-specific nature of the enzymatic biotransformations or transport processes that are involved in drug bioavailability. In vitro assays have been developed to indicate liabilities in scaffolds relating to the absorption, distribution or metabolism of new chemical entities. These models have been applied not only to screening and ranking of potential drug candidates but also to the understanding of the mechanisms leading to in vivo pharmacokinetic outcomes. The use of these models is leading to the development of structure-ADME property relationships in a manner similar to classical structure-activity relationship development, and in the future this is expected to lead to in silico models for predicting physiological and pharmacological effects prior to experimentation.


Subject(s)
Drug Design , Models, Biological , Pharmacokinetics , Biological Transport , Caco-2 Cells , Humans , In Vitro Techniques , Pharmaceutical Preparations/metabolism , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...