Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 131(4): 043603, 2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37566828

ABSTRACT

We report the levitation of a superconducting lead-tin sphere with 100 µm diameter (corresponding to a mass of 5.6 µg) in a static magnetic trap formed by two coils in an anti-Helmholtz configuration, with adjustable resonance frequencies up to 240 Hz. The center-of-mass motion of the sphere is monitored magnetically using a dc superconducting quantum interference device as well as optically and exhibits quality factors of up to 2.6×10^{7}. We also demonstrate 3D magnetic feedback control of the motion of the sphere. The setup is housed in a dilution refrigerator operating at 15 mK. By implementing a cryogenic vibration isolation system, we can attenuate environmental vibrations at 200 Hz by approximately 7 orders of magnitude. The combination of low temperature, large mass, and high quality factor provides a promising platform for testing quantum physics in previously unexplored regimes with high mass and long coherence times.

2.
Phys Rev Lett ; 126(8): 087201, 2021 Feb 26.
Article in English | MEDLINE | ID: mdl-33709738

ABSTRACT

We investigate the injection of quasiparticle spin currents into a superconductor via spin pumping from an adjacent ferromagnetic metal layer. To this end, we use NbN-Ni_{80}Fe_{20}(Py) heterostructures with a Pt spin sink layer and excite ferromagnetic resonance in the Permalloy layer by placing the samples onto a coplanar waveguide. A phase sensitive detection of the microwave transmission signal is used to quantitatively extract the inductive coupling strength between the sample and the coplanar waveguide, interpreted in terms of inverse current-induced torques, in our heterostructures as a function of temperature. Below the superconducting transition temperature T_{c}, we observe a suppression of the dampinglike torque generated in the Pt layer by the inverse spin Hall effect, which can be understood by the changes in spin current transport in the superconducting NbN layer. Moreover, below T_{c} we find a large fieldlike current-induced torque.

3.
Phys Rev Lett ; 125(24): 247204, 2020 Dec 11.
Article in English | MEDLINE | ID: mdl-33412012

ABSTRACT

We report on experiments demonstrating coherent control of magnon spin transport and pseudospin dynamics in a thin film of the antiferromagnetic insulator hematite utilizing two Pt strips for all-electrical magnon injection and detection. The measured magnon spin signal at the detector reveals an oscillation of its polarity as a function of the externally applied magnetic field. We quantitatively explain our experiments in terms of diffusive magnon transport and a coherent precession of the magnon pseudospin caused by the easy-plane anisotropy and the Dzyaloshinskii-Moriya interaction. This experimental observation can be viewed as the magnonic analog of the electronic Hanle effect and the Datta-Das transistor, unlocking the high potential of antiferromagnetic magnonics toward the realization of rich electronics-inspired phenomena.

4.
Phys Rev Lett ; 123(25): 257201, 2019 Dec 20.
Article in English | MEDLINE | ID: mdl-31922805

ABSTRACT

Applications based on spin currents strongly rely on the control and reduction of their effective damping and their transport properties. We here experimentally observe magnon mediated transport of spin (angular) momentum through a 13.4-nm thin yttrium iron garnet film with full control of the magnetic damping via spin-orbit torque. Above a critical spin-orbit torque, the fully compensated damping manifests itself as an increase of magnon conductivity by almost 2 orders of magnitude. We compare our results to theoretical expectations based on recently predicted current induced magnon condensates and discuss other possible origins of the observed critical behavior.

5.
Nat Mater ; 16(10): 977-981, 2017 10.
Article in English | MEDLINE | ID: mdl-28892056

ABSTRACT

The observation of the spin Hall effect triggered intense research on pure spin current transport. With the spin Hall effect, the spin Seebeck effect and the spin Peltier effect already observed, our picture of pure spin current transport is almost complete. The only missing piece is the spin Nernst (-Ettingshausen) effect, which so far has been discussed only on theoretical grounds. Here, we report the observation of the spin Nernst effect. By applying a longitudinal temperature gradient, we generate a pure transverse spin current in a Pt thin film. For readout, we exploit the magnetization-orientation-dependent spin transfer to an adjacent yttrium iron garnet layer, converting the spin Nernst current in Pt into a controlled change of the longitudinal and transverse thermopower voltage. Our experiments show that the spin Nernst and the spin Hall effect in Pt are of comparable magnitude, but differ in sign, as corroborated by first-principles calculations.


Subject(s)
Iron , Temperature
6.
Phys Rev Lett ; 108(17): 176601, 2012 Apr 27.
Article in English | MEDLINE | ID: mdl-22680888

ABSTRACT

We show that the resonant coupling of phonons and magnons can be exploited to generate spin currents at room temperature. Surface acoustic wave pulses with a frequency of 1.55 GHz and duration of 300 ns provide coherent elastic waves in a ferromagnetic thin-film-normal-metal (Co/Pt) bilayer. We use the inverse spin Hall voltage in the Pt as a measure for the spin current and record its evolution as a function of time and external magnetic field magnitude and orientation. Our experiments show that a spin current is generated in the exclusive presence of a resonant elastic excitation. This establishes acoustic spin pumping as a resonant analogue to the spin Seebeck effect.

7.
Rev Sci Instrum ; 82(7): 074707, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21806214

ABSTRACT

We report on the development and testing of a coplanar stripline antenna that is designed for integration in a magneto-photoluminescence experiment to allow coherent control of individual electron spins confined in single self-assembled semiconductor quantum dots. We discuss the design criteria for such a structure which is multi-functional in the sense that it serves not only as microwave delivery but also as electrical top gate and shadow mask for the single quantum dot spectroscopy. We present test measurements on hydrogenated amorphous silicon, demonstrating electrically detected magnetic resonance using the in-plane component of the oscillating magnetic field created by the coplanar stripline antenna necessary due to the particular geometry of the quantum dot spectroscopy. From reference measurements using a commercial electron spin resonance setup in combination with finite element calculations simulating the field distribution in the structure, we obtain a magnetic field of 0.12 mT at the position where the quantum dots would be integrated into the device. The corresponding π-pulse time of ≈0.5 µs meets the requirements set by the high sensitivity optical spin read-out scheme developed for the quantum dot.

8.
Phys Rev Lett ; 107(4): 046601, 2011 Jul 22.
Article in English | MEDLINE | ID: mdl-21867026

ABSTRACT

We systematically measured the dc voltage V(ISH) induced by spin pumping together with the inverse spin Hall effect in ferromagnet-platinum bilayer films. In all our samples, comprising ferromagnetic 3d transition metals, Heusler compounds, ferrite spinel oxides, and magnetic semiconductors, V(ISH) invariably has the same polarity, and scales with the magnetization precession cone angle. These findings, together with the spin mixing conductance derived from the experimental data, quantitatively corroborate the present theoretical understanding of spin pumping in combination with the inverse spin Hall effect.

9.
Phys Rev Lett ; 106(11): 117601, 2011 Mar 18.
Article in English | MEDLINE | ID: mdl-21469894

ABSTRACT

Surface acoustic waves (SAWs) in the GHz frequency range are exploited for the all-elastic excitation and detection of ferromagnetic resonance (FMR) in a ferromagnetic-ferroelectric (Ni/LiNbO(3)) hybrid device. We measure the SAW magnetotransmission at room temperature as a function of frequency, external magnetic field magnitude, and orientation. Our data are well described by a modified Landau-Lifshitz-Gilbert approach, in which a virtual, strain-induced tickle field drives the magnetization precession. This causes a distinct magnetic field orientation dependence of elastically driven FMR that we observe in both model and experiment.

10.
Phys Rev Lett ; 106(3): 037601, 2011 Jan 21.
Article in English | MEDLINE | ID: mdl-21405299

ABSTRACT

We demonstrate an electroelastic control of the hyperfine interaction between nuclear and electronic spins opening an alternative way to address and couple spin-based qubits. The hyperfine interaction is measured by electrically detected magnetic resonance in phosphorus-doped silicon epitaxial layers employing a hybrid structure consisting of a silicon-germanium virtual substrate and a piezoelectric actuator. By applying a voltage to the actuator, the hyperfine interaction is changed by up to 0.9 MHz, which would be enough to shift the phosphorus donor electron spin out of resonance by more than one linewidth in isotopically purified 28Si.


Subject(s)
Elasticity , Electricity , Phosphorus/chemistry , Silicon/chemistry , Quantum Theory
11.
Rev Sci Instrum ; 80(11): 114705, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19947749

ABSTRACT

The authors demonstrate readout of electrically detected magnetic resonance at radio frequencies by means of a LCR tank circuit. Applied to a silicon field-effect transistor at millikelvin temperatures, this method shows a 25-fold increased signal-to-noise ratio of the conduction band electron spin resonance and a higher operational bandwidth of >300 kHz compared to the kilohertz bandwidth of conventional readout techniques. This increase in temporal resolution provides a method for future direct observations of spin dynamics in the electrical device characteristics.

14.
Minn Med ; 49(1): 11-6, 1966 Jan.
Article in English | MEDLINE | ID: mdl-5901185
SELECTION OF CITATIONS
SEARCH DETAIL
...