Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 22(28): 16096-16106, 2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32638763

ABSTRACT

Understanding the role of defects in the magnetic properties of the graphene buffer layer (BL) grown on substrates should be important to provide hints for manufacturing future graphene-based spintronic devices in a controlled fashion. Herein, density functional theory was applied to assess the structure and magnetic properties of defective BL on 6H-SiC(0001). Particularly, we conducted a thorough study of one and two vacancies and Stone-Wales defects in the BL. Our results reveal that the removal of a carbon atom in the BL framework that was originally bonded to a Si atom in the substrate is preferred over that of a sp2-bonded atom. As a result, a hexacoordinated silicon atom is formed with a slightly deviated octahedral geometry. A stable antiferromagnetic (AF) state was verified for the single vacancy system, with a quite different spin-density distribution to the one obtained for the perfect BL. Also, this AF state is nearly degenerate with the non-magnetic and low magnetic states. As for the Stone-Wales defect, the AF sate is almost degenerate with the most stable M = 2 µB magnetic configuration. However, the introduction of two vacancies in the carbon network of BL causes the loss of magnetism of the BL-SiC system. Our theoretical calculations support experimental predictions favoring the BL as the site for single vacancy formation rather than the epitaxial monolayer graphene, by 4.3 eV.

2.
J Phys Condens Matter ; 31(43): 435001, 2019 Oct 30.
Article in English | MEDLINE | ID: mdl-31269473

ABSTRACT

We have employed density functional theory to study the structural, electronic and magnetic properties of the first all-carbon layer grown epitaxially on 6H-SiC(0 0 0 1). Using VDW-DF, M06-L, LSDA, LSDA+U, PBE and PBE-D2 methods we have performed a comparative study of the preferable magnetic configuration of the system. In this work, for the first time, we report a stable antiferromagnetic (AF) ordering in the buffer layer caused by the presence of silicon dangling bonds in the SiC top layer. This state is nearly degenerated with the ferromagnetic state with a magnetic moment equal to the number of silicon dangling bonds. A net magnetic moment of 0.55 µb per Si dangling bond was found for both states. However, only for the ferromagnetic state the carbon atoms of the buffer layer exhibited a magnetic moment. The magnetic configuration is much more stable than the non-polarized one and might explain SQUID results and spin transport experiments with epitaxial graphene. Furthermore, we found that, as previously observed experimentally, the buffer layer is a true semiconductor.

SELECTION OF CITATIONS
SEARCH DETAIL