Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 15(1): e0227268, 2020.
Article in English | MEDLINE | ID: mdl-31917785

ABSTRACT

Fibropapillomatosis (FP) is a marine turtle disease recognised by benign tumours on the skin, eyes, shell, oral cavity and/or viscera. Despite being a globally distributed disease that affects an endangered species, research on FP and its likely causative agent chelonid alphaherpesvirus 5 (ChHV5) in Australia is limited. Here we present improved molecular assays developed for detection of ChHV5, in combination with a robust molecular and phylogenetic analysis of ChHV5 variants. This approach utilised a multi-gene assay to detect ChHV5 in all FP tumors sampled from 62 marine turtles found at six foraging grounds along the Great Barrier Reef. Six distinct variants of ChHV5 were identified and the distribution of these variants was associated with host foraging ground. Conversely, no association between host genetic origin and ChHV5 viral variant was found. Together this evidence supports the hypothesis that marine turtles undergo horizontal transmission of ChHV5 at foraging grounds and are unlikely to be contracting the disease at rookeries, either during mating or vertically from parent to offspring.


Subject(s)
Alphaherpesvirinae/pathogenicity , Aquatic Organisms/virology , Endangered Species , Herpesviridae Infections/veterinary , Turtles/virology , Alphaherpesvirinae/genetics , Alphaherpesvirinae/isolation & purification , Animals , DNA, Viral/genetics , DNA, Viral/isolation & purification , Datasets as Topic , Gene Transfer, Horizontal , Herpesviridae Infections/transmission , Herpesviridae Infections/virology , Pacific Ocean , Phylogeny , Polymerase Chain Reaction , Queensland
2.
Waste Manag ; 61: 220-228, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27876290

ABSTRACT

Methane (CH4) and oxygen (air) concentrations affect the CH4 oxidation capacity (MOC) and mixed methanotrophic community structures in compost (fresh) and landfill (age old) top cover soils. A change in the mixed methanotrophic community structure in response has implications for landfill CH4 bio-filter remediation and possible bio-product outcomes (i.e., fatty acid methyl esters (FAME) content and profiles and polyhydroxybutyrate (PHB) contents). Therefore the study aimed to evaluate the effect of variable CH4 to oxygen ratios (10-50% CH4 in air) on mixed methanotrophic community structures enriched from landfill top cover (LB) and compost soils (CB) and to quantify flow on impacts on MOC, total FAME contents and profiles, and PHB accumulation. A stable consortium developed achieving average MOCs of 3.0±0.12, 4.1±0.26, 6.9±0.7, 7.6±1.3 and 9.2±1.2mgCH4g-1DWbiomassh-1 in LB and 2.9±0.04, 5.05±0.32, 6.7±0.31, 7.9±0.61 and 8.6±0.48mgCH4g-1DWbiomassh-1 in CB for a 20day cultivation period at 10, 20, 30, 40 and 50% CH4, respectively. CB at 10% CH4 had a maximal FAME content of 40.5±0.8mgFAMEg-1DWbiomass, while maximal PHB contents (25mgg-1DWbiomass) was observed at 40% CH4 in LB. Despite variable CH4/O2 ratios, the mixed methanotrophic community structures in both LB and CB were relatively stable, dominated by Methylosarcina sp., and Chryseobacterium, suggesting that a resilient consortium had formed which can now be tested in bio-filter operations for CH4 mitigations in landfills.


Subject(s)
Methane/metabolism , Microbial Consortia/physiology , Oxygen/metabolism , Soil Microbiology , Australia , Chryseobacterium/genetics , Chryseobacterium/metabolism , Fatty Acids/chemistry , Fatty Acids/metabolism , Methylococcaceae/genetics , Methylococcaceae/metabolism , Microbial Consortia/genetics , Oxidation-Reduction , Polyesters/metabolism , Prohibitins , RNA, Ribosomal, 16S , Waste Disposal Facilities
SELECTION OF CITATIONS
SEARCH DETAIL
...