Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Mater ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965405

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is characterized by its fibrotic and stiff extracellular matrix. However, how the altered cell/extracellular-matrix signalling contributes to the PDAC tumour phenotype has been difficult to dissect. Here we design and engineer matrices that recapitulate the key hallmarks of the PDAC tumour extracellular matrix to address this knowledge gap. We show that patient-derived PDAC organoids from three patients develop resistance to several clinically relevant chemotherapies when cultured within high-stiffness matrices mechanically matched to in vivo tumours. Using genetic barcoding, we find that while matrix-specific clonal selection occurs, cellular heterogeneity is not the main driver of chemoresistance. Instead, matrix-induced chemoresistance occurs within a stiff environment due to the increased expression of drug efflux transporters mediated by CD44 receptor interactions with hyaluronan. Moreover, PDAC chemoresistance is reversible following transfer from high- to low-stiffness matrices, suggesting that targeting the fibrotic extracellular matrix may sensitize chemoresistant tumours. Overall, our findings support the potential of engineered matrices and patient-derived organoids for elucidating extracellular matrix contributions to human disease pathophysiology.

2.
J Mech Behav Biomed Mater ; 138: 105661, 2023 02.
Article in English | MEDLINE | ID: mdl-36630754

ABSTRACT

Protein-based hydrogels have been extensively studied in the field of biomaterials given their ability to mimic living tissues and their special resemblance to the extracellular matrix. Despite this, the methods used for the control of mechanical properties of hydrogels are very limited, focusing mainly on their elasticity, with an often unrealistic characterization of mechanical properties such as extensibility, stiffness and viscoelasticity. Being able to control these properties is essential for the development of new biomaterials, since it has been demonstrated that mechanical properties affect cell behaviour and biological processes. To better understand the mechanical behaviour of these biopolymers, a computational model is here developed to characterize the mechanical behaviour of two different protein-based hydrogels. Strain-stress tests and stress-relaxation tests are evaluated computationally and compared to the results obtained experimentally in a previous work. To achieve this goal the Finite Element Method is used, combining hyperelastic and viscoelastic models. Different hyperelastic constitutive models (Mooney-Rivlin, Neo-Hookean, first and third order Ogden, and Yeoh) are proposed to estimate the mechanical properties of the protein-based hydrogels by least-square fitting of the in-vitro uniaxial test results. Among these models, the first order Ogden model with a viscoelastic model defined in Prony parameters better reproduces the strain-stress response and the change of stiffness with strain observed in the in-vitro tests.


Subject(s)
Biocompatible Materials , Hydrogels , Stress, Mechanical , Computer Simulation , Elasticity , Models, Biological
3.
Nanomaterials (Basel) ; 11(7)2021 Jun 24.
Article in English | MEDLINE | ID: mdl-34202469

ABSTRACT

Biomaterials are dynamic tools with many applications: from the primitive use of bone and wood in the replacement of lost limbs and body parts, to the refined involvement of smart and responsive biomaterials in modern medicine and biomedical sciences. Hydrogels constitute a subtype of biomaterials built from water-swollen polymer networks. Their large water content and soft mechanical properties are highly similar to most biological tissues, making them ideal for tissue engineering and biomedical applications. The mechanical properties of hydrogels and their modulation have attracted a lot of attention from the field of mechanobiology. Protein-based hydrogels are becoming increasingly attractive due to their endless design options and array of functionalities, as well as their responsiveness to stimuli. Furthermore, just like the extracellular matrix, they are inherently viscoelastic in part due to mechanical unfolding/refolding transitions of folded protein domains. This review summarizes different natural and engineered protein hydrogels focusing on different strategies followed to modulate their mechanical properties. Applications of mechanically tunable protein-based hydrogels in drug delivery, tissue engineering and mechanobiology are discussed.

4.
Nat Commun ; 10(1): 5828, 2019 12 20.
Article in English | MEDLINE | ID: mdl-31862885

ABSTRACT

Cells remodel their structure in response to mechanical strain. However, how mechanical forces are translated into biochemical signals that coordinate the structural changes observed at the plasma membrane (PM) and the underlying cytoskeleton during mechanoadaptation is unclear. Here, we show that PM mechanoadaptation is controlled by a tension-sensing pathway composed of c-Abl tyrosine kinase and membrane curvature regulator FBP17. FBP17 is recruited to caveolae to induce the formation of caveolar rosettes. FBP17 deficient cells have reduced rosette density, lack PM tension buffering capacity under osmotic shock, and cannot adapt to mechanical strain. Mechanistically, tension is transduced to the FBP17 F-BAR domain by direct phosphorylation mediated by c-Abl, a mechanosensitive molecule. This modification inhibits FBP17 membrane bending activity and releases FBP17-controlled inhibition of mDia1-dependent stress fibers, favoring membrane adaptation to increased tension. This mechanoprotective mechanism adapts the cell to changes in mechanical tension by coupling PM and actin cytoskeleton remodeling.


Subject(s)
Caveolae/metabolism , Fatty Acid-Binding Proteins/metabolism , Mechanotransduction, Cellular , Proto-Oncogene Proteins c-abl/metabolism , Stress Fibers/metabolism , Caveolae/ultrastructure , Fatty Acid-Binding Proteins/genetics , Fibroblasts , Gene Knockout Techniques , HEK293 Cells , HeLa Cells , Humans , Microscopy, Electron , Phosphorylation , RNA, Small Interfering/metabolism , Stress Fibers/ultrastructure , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...