Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sleep Breath ; 27(4): 1611-1618, 2023 08.
Article in English | MEDLINE | ID: mdl-36178574

ABSTRACT

PURPOSE: We evaluated whether or not changes in body composition following moderate hypoxic exposure for 4 weeks were different compared to sea level exposure. METHODS: In a randomized crossover design, nine trained participants were exposed to 2320 m of altitude or sea level for 4 weeks, separated by > 3 months. Body fat percentage (BF%), fat mass (FM), and fat-free mass (FFM) were determined before and after each condition by dual X-ray absorptiometry (DXA) and weekly by a bioelectrical impedance scanner to determine changes with a high resolution. Training volume was quantified during both interventions. RESULTS: Hypoxic exposure reduced (P < 0.01) BF% by 2 ± 1 percentage points and increased (P < 0.01) FFM by 2 ± 2% determined by DXA. A tending time × treatment effect existed for FM determined by DXA (P = 0.06), indicating a reduced FM in hypoxia by 8 ± 7% (P < 0.01). Regional body analysis revealed reduced (P < 0.01) BF% and FFM and an increased (P < 0.01) FFM in the truncus area. No changes were observed following sea level. Bioelectrical impedance determined that BF%, FM, and FFM did not reveal any differences between interventions. Urine specific gravity measured simultaneously as body composition was identical. Training volume was similar between interventions (509 ± 70 min/week vs. 432 ± 70 min/week, respectively). CONCLUSIONS: Four weeks of altitude exposure reduced BF% and increased FFM in trained individuals as opposed to sea level exposure. The results also indicate that a decrease in FM is greater at altitude compared to sea level. Changes were specifically observed in the truncus area.


Subject(s)
Adipose Tissue , Body Composition , Humans , Cross-Over Studies , Absorptiometry, Photon , Electric Impedance , Body Mass Index
2.
Foods ; 10(12)2021 Dec 04.
Article in English | MEDLINE | ID: mdl-34945556

ABSTRACT

Chia seeds are rich sources of different macro and micronutrients associated with health benefits; thus, they may be considered as a functional food. However, the composition depends on the variety, origin, climate and soil. Here, we show a comprehensive characterization of extractable and non-extractable phenolic compounds of dark chia seed Salvia hispanica L. using high-performance liquid chromatography-electrospray ionization-quadrupole time-of-flight (HPLC-ESI-QTOF) and discuss potential health benefits associated with the presence of a number of nutritional and bioactive compounds. We report that dark chia from Jalisco is a high-fiber food, containing omega-3 polyunsaturated fatty acids, essential amino acids (phenylalanine and tryptophan), and nucleosides (adenosine, guanidine and uridine), and rich in antioxidant phenolic compounds, mainly caffeic acid metabolites. Our data suggest that chia seeds may be used as ingredients for the development of functional foods and dietary supplements.

3.
Am J Physiol Regul Integr Comp Physiol ; 321(2): R152-R161, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34160288

ABSTRACT

Current markers of iron deficiency (ID), such as ferritin and hemoglobin, have shortcomings, and hepcidin and erythroferrone (ERFE) could be of clinical relevance in relation to early assessment of ID. Here, we evaluate whether exposure to altitude-induced hypoxia (2,320 m) alone, or in combination with recombinant human erythropoietin (rHuEPO) treatment, affects hepcidin and ERFE levels before alterations in routine ID biomarkers and stress erythropoiesis manifest. Two interventions were completed, each comprising a 4-wk baseline, a 4-wk intervention at either sea level or altitude, and a 4-wk follow-up. Participants (n = 39) were randomly assigned to 20 IU·kg body wt-1 rHuEPO or placebo injections every second day for 3 wk during the two intervention periods. Venous blood was collected weekly. Altitude increased ERFE (P ≤ 0.001) with no changes in hepcidin or routine iron biomarkers, making ERFE of clinical relevance as an early marker of moderate hypoxia. rHuEPO treatment at sea level induced a similar pattern of changes in ERFE (P < 0.05) and hepcidin levels (P < 0.05), demonstrating the impact of accelerated erythropoiesis and not of other hypoxia-induced mechanisms. Compared with altitude alone, concurrent rHuEPO treatment and altitude exposure induced additive changes in hepcidin (P < 0.05) and ERFE (P ≤ 0.001) parallel with increases in hematocrit (P < 0.001), demonstrating a relevant range of both hepcidin and ERFE. A poor but significant correlation between hepcidin and ERFE was found (R2 = 0.13, P < 0.001). The findings demonstrate that hepcidin and ERFE are more rapid biomarkers of changes in iron demands than routine iron markers. Finally, ERFE and hepcidin may be sensitive markers in an antidoping context.


Subject(s)
Altitude Sickness/blood , Altitude , Epoetin Alfa/administration & dosage , Erythropoiesis/drug effects , Hematinics/administration & dosage , Hepcidins/blood , Iron/blood , Peptide Hormones/blood , Altitude Sickness/diagnosis , Biomarkers/blood , Denmark , Double-Blind Method , Female , Homeostasis , Humans , Injections, Intravenous , Male , Recombinant Proteins/administration & dosage , Spain , Time Factors
4.
Drug Test Anal ; 13(7): 1331-1340, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33739618

ABSTRACT

We investigated whether immature reticulocyte fraction (IRF) and immature reticulocytes to red blood cells ratio (IR/RBC) are sensitive biomarkers for low-dose recombinant human erythropoietin (rhEpo) treatment at sea level (SL) and moderate altitude (AL) and whether multi (FACS) or single (Sysmex-XN) fluorescence flow cytometry is superior for IRF and IR/RBC determination. Thirty-nine participants completed two interventions, each containing a 4-week baseline, a 4-week SL or AL (2,230 m) exposure, and a 4-week follow-up. During exposure, rhEpo (20 IU kg-1 ) or placebo (PLA) was injected at SL (SLrhEpo , n = 25, SLPLA n = 9) and AL (ALrhEpo , n = 12, ALPLA n = 27) every second day for 3 weeks. Venous blood was collected weekly. Sysmex measurements revealed that IRF and IR/RBC were up to ~70% (P < 0.01) and ~190% (P < 0.001) higher in SLrhEpo than SLPLA during treatment and up to ~45% (P < 0.001) and ~55% (P < 0.01) lower post-treatment, respectively. Compared with ALPLA , IRF and IR/RBC were up to ~20% (P < 0.05) and ~45% (P < 0.001) lower post-treatment in SLrhEpo , respectively. In ALrhEpo , IRF and IR/RBC were up to ~40% (P < 0.05) and ~110% (P < 0.001) higher during treatment and up to ~25% (P < 0.05) and ~40% (P < 0.05) lower post-treatment, respectively, compared with ALPLA . Calculated thresholds provided ~90% sensitivity for both biomarkers at SL and 33% (IRF) and 66% (IR/RBC) at AL. Specificity was >99%. Single-fluorescence flow cytometry coefficient of variation was >twofold higher at baseline (P < 0.001) and provided larger or similar changes compared to multi-fluorescence, albeit with smaller precision. In conclusion, IRF and IR/RBC were sensitive and specific biomarkers for low-dose rhEpo misuse at SL and AL.


Subject(s)
Altitude , Epoetin Alfa/pharmacology , Hematinics/pharmacology , Reticulocytes/drug effects , Adult , Biomarkers/metabolism , Double-Blind Method , Epoetin Alfa/administration & dosage , Erythrocyte Count , Erythrocytes/cytology , Female , Flow Cytometry , Follow-Up Studies , Hematinics/administration & dosage , Humans , Male , Reticulocyte Count , Reticulocytes/cytology , Young Adult
5.
Drug Test Anal ; 13(2): 360-368, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32955164

ABSTRACT

This study evaluated whether recombinant human erythropoietin (rhEpo) treatment combined with chronic hypoxia provided an additive erythropoietic response and whether the athlete biological passport (ABP) sensitivity improved with hypoxia. Two interventions were completed, each containing 4 weeks baseline, 4 weeks exposure at sea level or 2,320 m of altitude, and 4 weeks follow-up. Participants were randomly assigned to 20 IU·kg bw-1 rhEpo or placebo injections every second day for 3 weeks during the exposure period at sea level (rhEpo n = 25, placebo n = 9) or at altitude (rhEpo n = 12, placebo n = 27). Venous blood was analyzed weekly. Combining rhEpo and hypoxia induced larger changes compared with rhEpo or hypoxia alone for [Hb] (p < 0.001 and p > 0.05, respectively), reticulocyte percentage (p < 0.001), and OFF-hr score (p < 0.01 and p < 0.001, respectively). The most pronounced effect was observed for reticulocyte percentage with up to ~35% (p < 0.001) and ~45% (p < 0.001) higher levels compared with rhEpo or hypoxia only, respectively. The ABP sensitivity for the combined treatment was 54 and 35 percentage points higher for [Hb] (p < 0.05) and reticulocyte percentage (p < 0.05), respectively, but similar for OFF-hr score, compared with rhEpo at sea level. Across any time point, [Hb] and OFF-hr score combined identified 14 unique true-positive participants (56%) at sea level and 12 unique true-positive participants (100%) at altitude. However, a concurrent reduction in specificity existed at altitude. In conclusion, rhEpo treatment combined with hypoxic exposure provided an additive erythropoietic response compared with rhEpo or hypoxic exposure alone. Correspondingly, ABP was more sensitive to rhEpo at altitude than at sea level, but a compromised specificity existed with hypoxic exposure.


Subject(s)
Erythropoietin/administration & dosage , Hypoxia/blood , Adult , Altitude , Athletes , Erythropoiesis/drug effects , Erythropoietin/blood , Erythropoietin/pharmacology , Female , Humans , Male , Recombinant Proteins/administration & dosage , Recombinant Proteins/blood , Recombinant Proteins/pharmacology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...