Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ultrasonics ; 135: 107114, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37517345

ABSTRACT

The use of porous phoxonic crystals with coupled optical and acoustic response has been proposed as a sensing device. Due to the porous nature of the crystal, each layer of the structure can be connected to the environment. As the optical and acoustic performances of the phoxonic crystal change when a gas permeates the pores due to modifications of the effective refractive index and density of the system, it results that these structures are suitable platforms for the detection of gases. The sensor designed following these premises can detect the composition of ternary gas mixtures through optical measurements, while an acoustic wave induces a structural oscillation. The amplified acoustic wave produces a mechanical deformation of the crystal layers that is maximized in the center a resonant microcavity. Therefore, under such experimental conditions, the sensitivity of the optical response is not only due to the optical property changes caused by the gas mixture in contact with the porous structure but also to changes in the mechanical deformations due to modifications of the acoustic properties. In this work, we discuss the device theoretical behavior as a multiparameter sensor that distinguishes the components and concentrations of a ternary gas mixture through the transfer matrix method. For a prototype combination of CO2-Air-CH4 mixture, the estimated resolution of the proposed device fabricated in porous silicon can be has high as 0.05% (500 ppm) in the concentration of each individual species.

2.
Int J Solids Struct ; 49(21): 2990-3007, 2012 Oct 15.
Article in English | MEDLINE | ID: mdl-24049211

ABSTRACT

A new formulation to model the mechanical behavior of high performance fiber reinforced cement composites with arbitrarily oriented short fibers is presented. The formulation can be considered as a two scale approach, in which the macroscopic model, at the structural level, takes into account the mesostructural phenomenon associated with the fiber-matrix interface bond/slip process. This phenomenon is contemplated by including, in the macroscopic description, a micromorphic field representing the relative fiber-cement displacement. Then, the theoretical framework, from which the governing equations of the problem are derived, can be assimilated to a specific case of the material multifield theory. The balance equation derived for this model, connecting the micro stresses with the micromorphic forces, has a physical meaning related with the fiber-matrix bond slip mechanism. Differently to previous procedures in the literature, addressed to model fiber reinforced composites, where this equation has been added as an additional independent ingredient of the methodology, in the present approach it arises as a natural result derived from the multifield theory. Every component of the composite is defined with a specific free energy and constitutive relation. The mixture theory is adopted to define the overall free energy of the composite, which is assumed to be homogeneously constituted, in the sense that every infinitesimal volume is occupied by all the components in a proportion given by the corresponding volume fraction. The numerical model is assessed by means of a selected set of experiments that prove the viability of the present approach.

SELECTION OF CITATIONS
SEARCH DETAIL
...