Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phytopathology ; 101(7): 819-27, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21281114

ABSTRACT

Soil bacterial communities have significant influence on soilborne plant pathogens and, thus, crop health. The present study focuses on ribotyping soil bacterial communities in different peanut-cropping sequences in Alabama. The objective was to identify changes in microbial assemblages in response to cropping sequences that can play a role in managing soilborne plant pathogens in peanut. Four peanut-cropping sequences were sampled at the Wiregrass Research Station, Headland, AL in 2006 and 2007, including continuous peanut, 4 years of bahiagrass followed by peanut, peanut-cotton, and peanut-corn-cotton. Soil sampling was done at early and mid-season and at harvest. Bacterial community structure was assessed using ribosomal intergenic spacer analysis (RISA) combined with 16S rRNA cloning and sequencing. RISA results indicated >70% dissimilarities among different cropping sequences. However, 90% similarities were noticed among replicated plots of the same cropping sequences. Cropping sequences and time of soil sampling had considerable effect on soil microbial community structure. Bahiagrass rotation with peanut was found to have the highest bacterial diversity, as indicated by a high Shannon Weaver Diversity index. Overall, higher bacterial diversity was observed with bahiagrass and corn rotations compared with continuous peanut. The bacterial divisions Proteobacteria, Acidobacteria, Firmicutes, Bacteroidetes, and Actinomycetes were the predominant bacterial phyla found in all peanut-cropping sequences. The Proteobacteria taxa in these soils were negatively correlated with the abundance of members of division Firmicutes but, conversely, had a significant positive correlation with Gemmatimonadetes taxa. The prevalence of the division Actinomycetes was negatively correlated with the relative abundance of members of division Verrucomicrobia. These results indicate complex interactions among soil bacteria that are important contributors to crop health.


Subject(s)
Agriculture/methods , Arachis/microbiology , Bacteria/classification , Crops, Agricultural/microbiology , Soil Microbiology , Aflatoxins/biosynthesis , Alabama , Bacteria/genetics , Base Sequence , Crops, Agricultural/classification , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Fruit/growth & development , Gossypium/microbiology , Molecular Sequence Data , Paspalum/microbiology , Phylogeny , Polymerase Chain Reaction , RNA, Ribosomal, 16S/genetics , Ribotyping , Sequence Analysis, DNA , Soil , Statistics as Topic , Time Factors , Zea mays/microbiology
2.
J Nematol ; 38(3): 305-11, 2006 Sep.
Article in English | MEDLINE | ID: mdl-19259533

ABSTRACT

Several nematode species have now attained 'model organism' status, yet there remain many niches in basic biological inquiry for which nematodes would be ideal model systems of study. However, furthering the model system approach is hindered by lack of information on nematode biodiversity. The shortage of taxonomic resources to inventory and characterize biodiversity hinders research programs in invasion biology, ecosystem functioning, conservation biology, and many others. The disproportion between numbers of species to be described and numbers of available taxonomic specialists is greater for Nematoda than for any other metazoan phylum. A partial solution to the taxonomic impediment is the adoption of recent advances in electronic publishing. Electronic publishing has the potential to increase the rate at which taxonomic papers are published, the breadth of their distribution, and the type, quantity, quality, and accessibility of data. We propose that the Journal of Nematology implement the advantageous aspects of electronic publication as a means to help ameliorate the limitations of an underdeveloped taxonomy and empower the nematological disciplines currently hindered by it.

SELECTION OF CITATIONS
SEARCH DETAIL
...