Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Bioconjug Chem ; 29(10): 3362-3376, 2018 10 17.
Article in English | MEDLINE | ID: mdl-30169965

ABSTRACT

The impact of influenza virus infection is felt each year on a global scale when approximately 5-10% of adults and 20-30% of children globally are infected. While vaccination is the primary strategy for influenza prevention, there are a number of likely scenarios for which vaccination is inadequate, making the development of effective antiviral agents of utmost importance. Anti-influenza treatments with innovative mechanisms of action are critical in the face of emerging viral resistance to the existing drugs. These new antiviral agents are urgently needed to address future epidemic (or pandemic) influenza and are critical for the immune-compromised cohort who cannot be vaccinated. We have previously shown that lipid tagged peptides derived from the C-terminal region of influenza hemagglutinin (HA) were effective influenza fusion inhibitors. In this study, we modified the influenza fusion inhibitors by adding a cell penetrating peptide sequence to promote intracellular targeting. These fusion-inhibiting peptides self-assemble into ∼15-30 nm nanoparticles (NPs), target relevant infectious tissues in vivo, and reduce viral infectivity upon interaction with the cell membrane. Overall, our data show that the CPP and the lipid moiety are both required for efficient biodistribution, fusion inhibition, and efficacy in vivo.


Subject(s)
Antiviral Agents/pharmacology , Cell-Penetrating Peptides/pharmacology , Influenza A virus/drug effects , Membrane Fusion/drug effects , Administration, Intranasal , Amino Acid Sequence , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Biological Availability , Cell Membrane/metabolism , Cell-Penetrating Peptides/chemistry , Endocytosis , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Humans , Immunocompromised Host , Nanoparticles/chemistry , Sigmodontinae , Viral Proteins/chemistry , tat Gene Products, Human Immunodeficiency Virus/chemistry
2.
J Virol ; 91(1)2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27733647

ABSTRACT

Measles virus (MV) infection is undergoing resurgence and remains one of the leading causes of death among young children worldwide despite the availability of an effective measles vaccine. MV infects its target cells by coordinated action of the MV hemagglutinin (H) and fusion (F) envelope glycoproteins; upon receptor engagement by H, the prefusion F undergoes a structural transition, extending and inserting into the target cell membrane and then refolding into a postfusion structure that fuses the viral and cell membranes. By interfering with this structural transition of F, peptides derived from the heptad repeat (HR) regions of F can inhibit MV infection at the entry stage. In previous work, we have generated potent MV fusion inhibitors by dimerizing the F-derived peptides and conjugating them to cholesterol. We have shown that prophylactic intranasal administration of our lead fusion inhibitor efficiently protects from MV infection in vivo We show here that peptides tagged with lipophilic moieties self-assemble into nanoparticles until they reach the target cells, where they are integrated into cell membranes. The self-assembly feature enhances biodistribution and the half-life of the peptides, while integration into the target cell membrane increases fusion inhibitor potency. These factors together modulate in vivo efficacy. The results suggest a new framework for developing effective fusion inhibitory peptides. IMPORTANCE: Measles virus (MV) infection causes an acute illness that may be associated with infection of the central nervous system (CNS) and severe neurological disease. No specific treatment is available. We have shown that fusion-inhibitory peptides delivered intranasally provide effective prophylaxis against MV infection. We show here that specific biophysical properties regulate the in vivo efficacy of MV F-derived peptides.


Subject(s)
Hemagglutinins, Viral/immunology , Measles Vaccine/administration & dosage , Measles virus/drug effects , Measles/prevention & control , Nanoparticles/administration & dosage , Peptides/immunology , Viral Fusion Proteins/immunology , Administration, Intranasal , Amino Acid Sequence , Animals , Brain/drug effects , Brain/immunology , Cholesterol/chemistry , Female , Half-Life , Hemagglutinins, Viral/chemistry , Humans , Lung/drug effects , Lung/immunology , Male , Measles/immunology , Measles/mortality , Measles/virology , Measles Vaccine/chemical synthesis , Measles virus/chemistry , Measles virus/immunology , Nanoparticles/chemistry , Peptides/chemical synthesis , Sigmodontinae , Survival Analysis , Viral Fusion Proteins/chemistry , Virus Internalization/drug effects
3.
Acta Biomater ; 23: 72-81, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26028293

ABSTRACT

The ability to repair damaged cartilage is a major goal of musculoskeletal tissue engineering. Allogeneic (same species, different individual) or xenogeneic (different species) sources can provide an attractive source of chondrocytes for cartilage tissue engineering, since autologous (same individual) cells are scarce. Immune rejection of non-autologous hyaline articular cartilage has seldom been considered due to the popular notion of "cartilage immunoprivilege". The objective of this study was to determine the suitability of allogeneic and xenogeneic engineered neocartilage tissue for cartilage repair. To address this, scaffold-free tissue engineered articular cartilage of syngeneic (same genetic background), allogeneic, and xenogeneic origin were implanted into two different locations of the rabbit knee (n=3 per group/location). Xenogeneic engineered cartilage and control xenogeneic chondral explants provoked profound innate inflammatory and adaptive cellular responses, regardless of transplant location. Cytological quantification of immune cells showed that, while allogeneic neocartilage elicited an immune response in the patella, negligible responses were observed when implanted into the trochlea; instead the responses were comparable to microfracture-treated empty defect controls. Allogeneic neocartilage survived within the trochlea implant site and demonstrated graft integration into the underlying bone. In conclusion, the knee joint cartilage does not represent an immune privileged site, strongly rejecting xenogeneic but not allogeneic chondrocytes in a location-dependent fashion. This difference in location-dependent survival of allogeneic tissue may be associated with proximity to the synovium. STATEMENT OF SIGNIFICANCE: Through a series of in vivo studies this research demonstrates that articular cartilage is not fully immunoprivileged. In addition, we now show that anatomical location of the defect, even within the same joint compartment, strongly influences the degree of the resultant immune response. This is one of the first investigations to show that (1) immune tolerance to allogeneic tissue engineered cartilage and (2) subsequent implant survival are dependent on the implant location and proximity to the synovium.


Subject(s)
Cartilage/immunology , Cartilage/transplantation , Fractures, Cartilage/pathology , Fractures, Cartilage/therapy , Immunity, Innate/immunology , Tissue Donors , Animals , Cattle , Female , Fractures, Cartilage/immunology , Rabbits , Treatment Outcome
4.
J Virol ; 89(2): 1143-55, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25378493

ABSTRACT

UNLABELLED: Measles virus (MV) infection is undergoing resurgence and remains one of the leading causes of death among young children worldwide despite the availability of an effective measles vaccine. MV infects its target cells by coordinated action of the MV H and the fusion (F) envelope glycoprotein; upon receptor engagement by H, the prefusion F undergoes a structural transition, extending and inserting into the target cell membrane and then refolding into a postfusion structure that fuses the viral and cell membranes. By interfering with this structural transition of F, peptides derived from the heptad-repeat (HR) regions of F can potently inhibit MV infection at the entry stage. We show here that specific features of H's interaction with its receptors modulate the susceptibility of MV F to peptide fusion inhibitors. A higher concentration of inhibitory peptides is required to inhibit F-mediated fusion when H is engaged to its nectin-4 receptor than when H is engaged to its CD150 receptor. Peptide inhibition of F may be subverted by continued engagement of receptor by H, a finding that highlights the ongoing role of H-receptor interaction after F has been activated and that helps guide the design of more potent inhibitory peptides. Intranasal administration of these peptides results in peptide accumulation in the airway epithelium with minimal systemic levels of peptide and efficiently prevents MV infection in vivo in animal models. The results suggest an antiviral strategy for prophylaxis in vulnerable and/or immunocompromised hosts. IMPORTANCE: Measles virus (MV) infection causes an acute illness that may be associated with infection of the central nervous system (CNS) and severe neurological disease. No specific treatment is available. We have shown that parenterally delivered fusion-inhibitory peptides protect mice from lethal CNS MV disease. Here we show, using established small-animal models of MV infection, that fusion-inhibitory peptides delivered intranasally provide effective prophylaxis against MV infection. Since the fusion inhibitors are stable at room temperature, this intranasal strategy is feasible even outside health care settings, could be used to protect individuals and communities in case of MV outbreaks, and could complement global efforts to control measles.


Subject(s)
Antiviral Agents/administration & dosage , Measles virus/drug effects , Measles/prevention & control , Oligopeptides/administration & dosage , Viral Fusion Proteins/administration & dosage , Virus Internalization/drug effects , Administration, Intranasal , Animals , Chemoprevention/methods , Disease Models, Animal , Female , Male , Mice, Inbred C57BL , Mice, Transgenic , Sigmodontinae
5.
Educ Health (Abingdon) ; 14(1): 11-9, 2001.
Article in English | MEDLINE | ID: mdl-14742040

ABSTRACT

Clinical psychologists, like most health professionals, are in essence clinical problem-solvers. However, dealing with mental health problems may necessitate a greater relative reliance upon inductive clinical reasoning during the problem-solving process. To develop a provisional problem formulation mental health professionals may have to make sense of the co-occurrence of complex and poorly delineated problems. Claims have been made, predominantly in the literature on medical education, regarding the utility of problem-based learning (PBL) for achieving aims central to the effective performance of this role. In this article, after characterizing clinical psychology and PBL, we briefly explore the benefits claimed for PBL and assert that the putative cognitive and interpersonal consequences of the approach may be particularly pertinent to mental health practice. Particular emphasis is placed upon the necessity of facilitating effective clinical reasoning, that is, teaching future practitioners how to, rather than what to, think about complex psychopathology. PBL is also considered in the wider context of models of experiential learning and methods for teaching problem-solving. Finally, future research questions are suggested which may provide answers relevant to the facilitation of effective clinical reasoning in all health professions.

6.
Perception ; 26(12): 1555-70, 1997.
Article in English | MEDLINE | ID: mdl-9616483

ABSTRACT

We examined whether faces can produce a 'pop-out' effect in visual search tasks. In the first experiment, subjects' eye movements and search latencies were measured while they viewed a display containing a target face amidst distractors. Targets were upright or inverted faces presented with seven others of the opposite polarity as an 'around-the-clock' display. Face images were either photographic or 'feature only', with the outline removed. Naive subjects were poor at locating an upright face from an array of inverted faces, but performance improved with practice. In the second experiment, we investigated systematically how training improved performance. Prior to testing, subjects were practised on locating either upright or inverted faces. All subjects benefited from training. Subjects practised on upright faces were faster and more accurate at locating upright target faces than inverted. Subjects practised on inverted faces showed no difference between upright and inverted targets. In the third experiment, faces with 'jumbled' features were used as distractors, and this resulted in the same pattern of findings. We conclude that there is no direct rapid 'pop-out' effect for faces. However, the findings demonstrate that, in peripheral vision, upright faces show a processing advantage over inverted faces.


Subject(s)
Face , Form Perception , Adult , Female , Humans , Male , Middle Aged , Pilot Projects , Psychological Tests , Visual Field Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...