Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(5): e0302496, 2024.
Article in English | MEDLINE | ID: mdl-38709760

ABSTRACT

Adult mosquitoes require regular sugar meals, including nectar, to survive in natural habitats. Both males and females locate potential sugar sources using sensory proteins called odorant receptors (ORs) activated by plant volatiles to orient toward flowers or honeydew. The yellow fever mosquito, Aedes aegypti (Linnaeus, 1762), possesses a large gene family of ORs, many of which are likely to detect floral odors. In this study, we have uncovered ligand-receptor pairings for a suite of Aedes aegypti ORs using a panel of environmentally relevant, plant-derived volatile chemicals and a heterologous expression system. Our results support the hypothesis that these odors mediate sensory responses to floral odors in the mosquito's central nervous system, thereby influencing appetitive or aversive behaviors. Further, these ORs are well conserved in other mosquitoes, suggesting they function similarly in diverse species. This information can be used to assess mosquito foraging behavior and develop novel control strategies, especially those that incorporate mosquito bait-and-kill technologies.


Subject(s)
Aedes , Flowers , Receptors, Odorant , Volatile Organic Compounds , Animals , Aedes/physiology , Aedes/metabolism , Receptors, Odorant/metabolism , Receptors, Odorant/genetics , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/analysis , Female , Male , Yellow Fever/transmission , Odorants/analysis , Plants/metabolism , Plants/chemistry
2.
PLoS One ; 14(11): e0225637, 2019.
Article in English | MEDLINE | ID: mdl-31751420

ABSTRACT

Insects express chemical receptors within sensory neurons that are activated by specific cues in the environment, thereby influencing the acquisition of critical resources. A significant gap in our current understanding of insect chemical ecology is defining the molecular mechanisms that underlie sensitivity to plant-emitted volatiles. Linalool is a commonly-occurring monoterpene that has various effects on insect behavior, either acting as an attractant or a repellent, and existing in nature as one of two possible stereoisomers, (R)-(-)-linalool and (S)-(+)-linalool. In this study, we have used a cell-based functional assay to identify linalool and structurally-related compounds as ligands of Odorant receptor 29, a labellum-expressed receptor in the malaria vector mosquito, Anopheles gambiae (AgamOr29). While (R)-(-)-linalool activates AgamOr29, a mixture of the (R) and (S) stereoisomers activates the receptor with higher potency, implying enantiomeric selectivity. Orthologs of Or29 are present in the genomes of Anophelines within the Cellia subgenus. The conservation of this receptor across Anopheline lineages suggests that this ecologically important compound might serve as an attraction cue for nectar-seeking mosquitoes. Moreover, the characterization of a mosquito terpene receptor could serve as a foundation for future ligand-receptor studies of plant volatiles and for the discovery of compounds that can be integrated into push-pull vector control strategies.


Subject(s)
Acyclic Monoterpenes/pharmacology , Anopheles/physiology , Gene Expression Profiling/methods , Receptors, Odorant/genetics , Animals , Anopheles/drug effects , Behavior, Animal/drug effects , Cloning, Molecular , Gene Expression Regulation/drug effects , Phylogeny , Plant Extracts/pharmacology , Receptors, Odorant/chemistry , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...