Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 10(1): 4271, 2019 09 19.
Article in English | MEDLINE | ID: mdl-31537807

ABSTRACT

Protein recycling through the endolysosomal system relies on molecular assemblies that interact with cargo proteins, membranes, and effector molecules. Among them, the COMMD/CCDC22/CCDC93 (CCC) complex plays a critical role in recycling events. While CCC is closely associated with retriever, a cargo recognition complex, its mechanism of action remains unexplained. Herein we show that CCC and retriever are closely linked through sharing a common subunit (VPS35L), yet the integrity of CCC, but not retriever, is required to maintain normal endosomal levels of phosphatidylinositol-3-phosphate (PI(3)P). CCC complex depletion leads to elevated PI(3)P levels, enhanced recruitment and activation of WASH (an actin nucleation promoting factor), excess endosomal F-actin and trapping of internalized receptors. Mechanistically, we find that CCC regulates the phosphorylation and endosomal recruitment of the PI(3)P phosphatase MTMR2. Taken together, we show that the regulation of PI(3)P levels by the CCC complex is critical to protein recycling in the endosomal compartment.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Endosomes/metabolism , Microfilament Proteins/metabolism , Phosphatidylinositol Phosphates/metabolism , Proteins/metabolism , Vesicular Transport Proteins/metabolism , Actins/metabolism , Animals , Cell Line, Tumor , HEK293 Cells , HeLa Cells , Humans , Lysosomes/metabolism , Membrane Proteins/metabolism , Mice , Phosphorylation , Protein Tyrosine Phosphatases, Non-Receptor/metabolism , RNA Interference , RNA, Small Interfering/genetics
2.
Cell Rep ; 24(9): 2342-2355, 2018 08 28.
Article in English | MEDLINE | ID: mdl-30157428

ABSTRACT

Physiologic microbe-host interactions in the intestine require the maintenance of the microbiota in a luminal compartment through a complex interplay between epithelial and immune cells. However, the roles of mucosal myeloid cells in this process remain incompletely understood. In this study, we identified that decreased myeloid cell phagocytic activity promotes colon tumorigenesis. We show that this is due to bacterial accumulation in the lamina propria and present evidence that the underlying mechanism is bacterial induction of prostaglandin production by myeloid cells. Moreover, we show that similar events in the normal colonic mucosa lead to reductions in Tuft cells, goblet cells, and the mucus barrier of the colonic epithelium. These alterations are again linked to the induction of prostaglandin production in response to bacterial penetration of the mucosa. Altogether, our work highlights immune cell-epithelial cell interactions triggered by the microbiota that control intestinal immunity, epithelial differentiation, and carcinogenesis.


Subject(s)
Carcinogenesis/metabolism , Epithelial Cells/immunology , Intestines/physiopathology , Microbiota/physiology , Myeloid Cells/metabolism , Animals , Humans , Mice
3.
Nature ; 553(7687): 208-211, 2018 01 11.
Article in English | MEDLINE | ID: mdl-29323293

ABSTRACT

Inflammatory diseases of the gastrointestinal tract are frequently associated with dysbiosis, characterized by changes in gut microbial communities that include an expansion of facultative anaerobic bacteria of the Enterobacteriaceae family (phylum Proteobacteria). Here we show that a dysbiotic expansion of Enterobacteriaceae during gut inflammation could be prevented by tungstate treatment, which selectively inhibited molybdenum-cofactor-dependent microbial respiratory pathways that are operational only during episodes of inflammation. By contrast, we found that tungstate treatment caused minimal changes in the microbiota composition under homeostatic conditions. Notably, tungstate-mediated microbiota editing reduced the severity of intestinal inflammation in mouse models of colitis. We conclude that precision editing of the microbiota composition by tungstate treatment ameliorates the adverse effects of dysbiosis in the inflamed gut.


Subject(s)
Colitis/drug therapy , Colitis/microbiology , Gastrointestinal Microbiome/drug effects , Intestines/drug effects , Intestines/microbiology , Anaerobiosis/drug effects , Animals , Cell Respiration/drug effects , Dysbiosis/drug therapy , Dysbiosis/microbiology , Enterobacteriaceae/drug effects , Enterobacteriaceae/growth & development , Enterobacteriaceae/metabolism , Female , Inflammation/drug therapy , Inflammation/microbiology , Inflammation/pathology , Intestinal Mucosa/drug effects , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Intestines/pathology , Male , Mice , Mice, Inbred C57BL , Molybdenum/metabolism , Tungsten Compounds/pharmacology , Tungsten Compounds/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...