Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Rev Chem ; 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39039210

ABSTRACT

Disorder in redox-active monolayers convolutes electrochemical characterization. This disorder can come from pinhole defects, loose packing, heterogeneous distribution of redox-active headgroups, and lateral interactions between immobilized redox-active molecules. Identifying the source of non-ideal behaviour in cyclic voltammograms can be challenging as different types of disorder often cause similar non-ideal cyclic voltammetry behaviour such as peak broadening, large peak-to-peak separation, peak asymmetry and multiple peaks for single redox processes. This Review provides an overview of ideal voltammetric behaviour for redox-active monolayers, common manifestations of disorder on voltammetric responses, common experimental parameters that can be varied to interrogate sources of disorder, and finally, examples of different types of disorder and how they impact electrochemical responses.

2.
ACS Appl Mater Interfaces ; 15(1): 984-996, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36548441

ABSTRACT

A sonochemical-based hydrosilylation method was employed to covalently attach a rhenium tricarbonyl phenanthroline complex to silicon(111). fac-Re(5-(p-Styrene)-phen)(CO)3Cl (5-(p-styrene)-phen = 5-(4-vinylphenyl)-1,10-phenanthroline) was reacted with hydrogen-terminated silicon(111) in an ultrasonic bath to generate a hybrid photoelectrode. Subsequent reaction with 1-hexene enabled functionalization of remaining atop Si sites. Attenuated total reflectance-Fourier transform infrared spectroscopy confirms attachment of the organometallic complex to silicon without degradation of the organometallic core, supporting hydrosilylation as a strategy for installing coordination complexes that retain their molecular integrity. Detection of Re(I) and nitrogen by X-ray photoelectron spectroscopy (XPS) further support immobilization of fac-Re(5-(p-styrene)-phen)(CO)3Cl. Cyclic voltammetry and electrochemical impedance spectroscopy under white light illumination indicate that fac-Re(5-(p-styrene)-phen)(CO)3Cl undergoes two electron reductions. Mott-Schottky analysis indicates that the flat band potential is 239 mV more positive for p-Si(111) co-functionalized with both fac-Re(5-(p-styrene)-phen)(CO)3Cl and 1-hexene than when functionalized with 1-hexene alone. XPS, ultraviolet photoelectron spectroscopy, and Mott-Schottky analysis show that functionalization with fac-Re(5-(p-styrene)-phen)(CO)3Cl and 1-hexene introduces a negative interfacial dipole, facilitating reductive photoelectrochemistry.

3.
Chem Commun (Camb) ; 57(4): 516-519, 2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33331837

ABSTRACT

We report a Co-based complex for the reduction of O2 to H2O utilizing decamethylferrocene as chemical reductant and acetic acid as a proton donor in methanol solution. Despite structural similarities to previously reported Co(N2O2) complexes capable of catalytic O2 reduction, this system shows selectivity for the four-electron/four-proton reduction product, H2O, instead of the two-electron/two-proton reduction product, H2O2. Mechanistic studies show that the overall rate law is analogous to previous examples, suggesting that the key selectivity difference arises in part from increased favorability of protonation at the distal O position of the key intermediate Co(iii)-hydroperoxide, instead of the proximal one. Interestingly, no product selectivity dependence is observed with respect to the presence of pyridine, which is proposed to bind trans to O2 during catalysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...