Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 62(44): 18136-18149, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37875401

ABSTRACT

The pursuit of a trivalent plutonium halide phosphine oxide compound, e.g., "PuBr3(OPR)3," instead led to the isolation of the tetravalent trans-PuIVBr4(OPCy3)2, PuBr/Cy, compound by spontaneous oxidation of PuIII. The donating nature of phosphine oxides has allowed the isolation and characterization of PuBr/Cy by crystallographic, multinuclear NMR, solid state, and solution phase UV-vis-NIR spectroscopic techniques. The presence of a putative plutonyl(VI) complex formulated as "trans-PuVIO2Br2(OPCy3)2" was also observed spectroscopically and tentatively by single-crystal X-ray diffraction as a cocrystal of PuBr/Cy. A series of trans-ThX4(OPCy3)2 (X = Cl, ThCl/Cy; Br, ThBr/Cy; I, ThI/Cy) complexes were synthesized for comparison to PuBr/Cy. The triphenylphosphine oxide, OPPh3, complexes, trans-AnI4(OPPh3)2 (An = Th, ThI/Ph; U, UI/Ph), were also synthesized for comparison, completing the series trans-UX4(OPPh3)2 (X = Cl, Br, I), UX/Ph. To enable the synthesis of ThI/Cy and ThI/Ph, a new nonaqueous thorium iodide starting material, ThI4(Et2O)2, was synthesized. The syntheses of organic solvent soluble ThI4L2 (L = Et2O, OPCy3, and OPPh3) are the first examples of crystallographically characterized neutral thorium tetraiodide materials beyond binary ThI4. To show the viability of ThI4(Et2O)2 as a starting material for organothorium chemistry, (C5Me4H)3ThI was synthesized and crystallographically characterized.

2.
Inorg Chem ; 62(16): 6368-6374, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37043631

ABSTRACT

Dinuclear, organometallic, transuranium compounds, (Cp'3M)2(µ-4,4'-bpy) (Cp'- = trimethylsilylcyclopentadienide, 4,4'-bpy = 4,4'-bipyridine, M = Ce, Np, Pu), reported herein provide a rare opportunity to probe the nature of actinide-carbon bonding. Significant splitting of the f-f transitions results from the unusual coordination environment in these complexes and leads to electronic properties that are currently restricted to organoactinide systems. Structural and spectroscopic characterization in the solid state and in solution for (Cp'3M)2(µ-4,4'-bpy) (M = Np, Pu) are reported, and their structural metrics are compared to a cerium analogue.

3.
Chem Commun (Camb) ; 58(84): 11791-11794, 2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36193661

ABSTRACT

The aqueous reaction of sodium pyrithione, (Na)mpo, with 243AmCl3·nH2O yields a dimerized complex, [243Am(mpo)2(µ-O-mpo)(H2O)]2·3H2O. This compound is compared with isostructural lanthanide pyrithionates, where dimerization across the 4f-block is observed to be dependent upon the size of the cation. Unlike in most reported Am(III) UV-visible absorption spectra, [243Am(mpo)2(µ-O-mpo)(H2O)]2·3H2O shows significant splitting in the fingerprint excitations. This is attributed to a unique ligand-field environment, where the Am-mpo bonds possess different bonding compared to the Nd(III) analog because of increasing covalent interactions.

4.
Inorg Chem ; 61(28): 10822-10832, 2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35776877

ABSTRACT

Despite the significant impact of radiation-induced redox reactions on the accessibility and lifetimes of actinide oxidation states, fundamental knowledge of aqueous actinide metal ion radiation chemistry is limited, especially for the late actinides. A quantitative understanding of these intrinsic radiation-induced processes is essential for investigating the fundamental properties of these actinides. We present here a picosecond electron pulse reaction kinetics study into the radiation-induced redox chemistry of trivalent berkelium (Bk(III)) and californium (Cf(III)) ions in acidic aqueous solutions at ambient temperature. New and first-of-a-kind, second-order rate coefficients are reported for the transient radical-induced reduction of Bk(III) and Cf(III) by the hydrated electron (eaq-) and hydrogen atom (H•), demonstrating a significant reactivity (up to 1011 M-1 s-1) indicative of a preference of these metals to adopt divalent states. Additionally, we report the first-ever second-order rate coefficients for the transient radical-induced oxidation of these elements by a reaction with hydroxyl (•OH) and nitrate (NO3•) radicals, which also exhibited fast reactivity (ca. 108 M-1 s-1). Transient Cf(II), Cf(IV), and Bk(IV) absorption spectra are also reported. Overall, the presented data highlight the existence of rich, complex, intrinsic late actinide radiation-induced redox chemistry that has the potential to influence the findings of other areas of actinide science.

5.
Dalton Trans ; 50(41): 14537-14541, 2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34635890

ABSTRACT

The interplay of bond strength and covalency are examined in AnO2Cl2(OPcy3)2 (An = Pu, U) complexes. The synthesis of trans-PuO2Cl2(OPcy3)2, 1-Pu, has been carried out and confirmed by single crystal X-ray diffraction along with UV-vis-NIR, and 31P NMR spectroscopies. Theoretical analysis finds that despite a higher calculated covalency for the Pu-Cl interaction, the Pu-OPcy3 interaction is stronger due to the accumulation of electron density in the interatomic region. The coordination of equatorial ligands slightly decreases the strength of the PuOyl interactions relative to the free gas phase (PuO2)2+ ion.

6.
Inorg Chem ; 59(18): 13301-13314, 2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32910649

ABSTRACT

An approach to obtaining substantial amounts of data from a hazardous starting material that can only be obtained and handled in small quantities is demonstrated by the investigation of a single small-scale reaction of cyclooctatetraene, C8H8, with a solution obtained from the reduction of Cp'3Pu (Cp' = C5H4SiMe3) with potassium graphite. This one reaction coupled with oxidation of a product has provided single-crystal X-ray structural data on three organoplutonium compounds as well as information on redox chemistry thereby demonstrating an efficient route to new reactivity and structural information on this highly radioactive element. The crystal structures were obtained from the reduction of C8H8 by a putative Pu(II) complex, (Cp'3PuII)1-, generated in situ, to form the Pu(III) cyclooctatetraenide complex, [K(crypt)][(C8H8)2PuIII], 1-Pu, and the tetra(cyclopentadienyl) Pu(III) complex, [K(crypt)][Cp'4PuIII], 2-Pu. Oxidation of the sample of 1-Pu with Ag(I) afforded a third organoplutonium complex that has been structurally characterized for the first time, (C8H8)2PuIV, 3-Pu. Complexes 1-Pu and 3-Pu contain Pu sandwiched between parallel (C8H8)2- rings. The (Cp'4PuIII)- anion in 2-Pu features three η5-Cp' rings and one η1-Cp' ring, which is a rare example of a formal Pu-C η1-bond. In addition, this study addresses the challenge of small-scale synthesis imparted by radiological and material availability of transuranium isotopes, in particular that of pure metal samples. A route to an anhydrous Pu(III) starting material from the more readily available PuIVO2 was developed to facilitate reproducible syntheses and allow complete spectroscopic analysis of 1-Pu and 2-Pu. PuIVO2 was converted to PuIIIBr3(DME)2 (DME = CH3OCH2CH2OCH3) and subsequently PuIIIBr3(THF)x, which was used to independently synthesize 1-Pu, 2-Pu, and 3-Pu.

SELECTION OF CITATIONS
SEARCH DETAIL
...