Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Philos Trans R Soc Lond B Biol Sci ; 374(1777): 20180245, 2019 07 22.
Article in English | MEDLINE | ID: mdl-31154975

ABSTRACT

The selection of desirable traits in crops during domestication has been well studied. Many crops share a suite of modified phenotypic characteristics collectively known as the domestication syndrome. In this sense, crops have convergently evolved. Previous work has demonstrated that, at least in some instances, convergence for domestication traits has been achieved through parallel molecular means. However, both demography and selection during domestication may have placed limits on evolutionary potential and reduced opportunities for convergent adaptation during post-domestication migration to new environments. Here we review current knowledge regarding trait convergence in the cereal grasses and consider whether the complexity and dynamism of cereal genomes (e.g., transposable elements, polyploidy, genome size) helped these species overcome potential limitations owing to domestication and achieve broad subsequent adaptation, in many cases through parallel means. This article is part of the theme issue 'Convergent evolution in the genomics era: new insights and directions'.


Subject(s)
Biological Evolution , Crops, Agricultural/genetics , Poaceae/genetics , Adaptation, Physiological , Crops, Agricultural/physiology , Genome Size , Genome, Plant , Poaceae/physiology , Selection, Genetic
2.
Heredity (Edinb) ; 110(6): 570-7, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23443059

ABSTRACT

Maize Abnormal chromosome 10 (Ab10) contains a classic meiotic drive system that exploits the asymmetry of meiosis to preferentially transmit itself and other chromosomes containing specialized heterochromatic regions called knobs. The structure and diversity of the Ab10 meiotic drive haplotype is poorly understood. We developed a bacterial artificial chromosome (BAC) library from an Ab10 line and used the data to develop sequence-based markers, focusing on the proximal portion of the haplotype that shows partial homology to normal chromosome 10. These molecular and additional cytological data demonstrate that two previously identified Ab10 variants (Ab10-I and Ab10-II) share a common origin. Dominant PCR markers were used with fluorescence in situ hybridization to assay 160 diverse teosinte and maize landrace populations from across the Americas, resulting in the identification of a previously unknown but prevalent form of Ab10 (Ab10-III). We find that Ab10 occurs in at least 75% of teosinte populations at a mean frequency of 15%. Ab10 was also found in 13% of the maize landraces, but does not appear to be fixed in any wild or cultivated population. Quantitative analyses suggest that the abundance and distribution of Ab10 is governed by a complex combination of intrinsic fitness effects as well as extrinsic environmental variability.


Subject(s)
Chromosomes, Plant/genetics , Genetic Variation , Meiosis/genetics , Zea mays/genetics , Centromere/genetics , Genetics, Population , Haplotypes , Heterochromatin/genetics , In Situ Hybridization, Fluorescence , Molecular Sequence Data
3.
Mol Ecol ; 18(4): 750-61, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19143938

ABSTRACT

A possible consequence of planting genetically modified organisms (GMOs) in centres of crop origin is unintended gene flow into traditional landraces. In 2001, a study reported the presence of the transgenic 35S promoter in maize landraces sampled in 2000 from the Sierra Juarez of Oaxaca, Mexico. Analysis of a large sample taken from the same region in 2003 and 2004 could not confirm the existence of transgenes, thereby casting doubt on the earlier results. These two studies were based on different sampling and analytical procedures and are thus hard to compare. Here, we present new molecular data for this region that confirm the presence of transgenes in three of 23 localities sampled in 2001. Transgene sequences were not detected in samples taken in 2002 from nine localities, while directed samples taken in 2004 from two of the positive 2001 localities were again found to contain transgenic sequences. These findings suggest the persistence or re-introduction of transgenes up until 2004 in this area. We address variability in recombinant sequence detection by analyzing the consistency of current molecular assays. We also present theoretical results on the limitations of estimating the probability of transgene detection in samples taken from landraces. The inclusion of a limited number of female gametes and, more importantly, aggregated transgene distributions may significantly lower detection probabilities. Our analytical and sampling considerations help explain discrepancies among different detection efforts, including the one presented here, and provide considerations for the establishment of monitoring protocols to detect the presence of transgenes among structured populations of landraces.


Subject(s)
Environmental Monitoring , Plants, Genetically Modified/genetics , Transgenes , Zea mays/genetics , Base Sequence , DNA, Plant/genetics , Gene Flow , Genetics, Population , Mexico , Molecular Sequence Data , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...