Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Beilstein J Nanotechnol ; 13: 1120-1140, 2022.
Article in English | MEDLINE | ID: mdl-36299563

ABSTRACT

Cantilever-based atomic force microscopy (AFM) performed under ambient conditions has become an important tool to characterize new material systems as well as devices. Current instruments permit robust scanning over large areas, atomic-scale lateral resolution, and the characterization of various sample properties using multifrequency and multimodal AFM operation modes. Research of new quantum materials and devices, however, often requires low temperatures and ultrahigh vacuum (UHV) conditions and, more specifically, AFM instrumentation providing atomic resolution. For this, AFM instrumentation based on a tuning fork force sensor became increasingly popular. In comparison to microfabricated cantilevers, the more macroscopic tuning forks, however, lack sensitivity, which limits the measurement bandwidth. Moreover, multimodal and multifrequency techniques, such as those available in cantilever-based AFM carried out under ambient conditions, are challenging to implement. In this article, we describe a cantilever-based low-temperature UHV AFM setup that allows one to transfer the versatile AFM techniques developed for ambient conditions to UHV and low-temperature conditions. We demonstrate that such a cantilever-based AFM offers experimental flexibility by permitting multimodal or multifrequency operations with superior force derivative sensitivities and bandwidths. Our instrument has a sub-picometer gap stability and can simultaneously map not only vertical and lateral forces with atomic-scale resolution, but also perform rapid overview scans with the tip kept at larger tip-sample distances for robust imaging.

2.
Article in English | MEDLINE | ID: mdl-35830277

ABSTRACT

The development of skyrmionic devices requires a suitable tuning of material parameters to stabilize skyrmions and control their density. It has been demonstrated recently that different skyrmion types can be simultaneously stabilized at room temperature in heterostructures involving ferromagnets, ferrimagnets, and heavy metals, offering a new platform of coding binary information in the type of skyrmion instead of the presence/absence of skyrmions. Here, we tune the energy landscape of the two skyrmion types in such heterostructures by engineering the geometrical and material parameters of the individual layers. We find that a fine adjustment of the ferromagnetic layer thickness, and thus its magnetic anisotropy, allows the trilayer system to support either one of the skyrmion types or the coexistence of both and with varying densities.

3.
ACS Appl Mater Interfaces ; 13(4): 5762-5771, 2021 Feb 03.
Article in English | MEDLINE | ID: mdl-33464807

ABSTRACT

Machine learning is changing how we design and interpret experiments in materials science. In this work, we show how unsupervised learning, combined with ab initio random structure searching, improves our understanding of structural metastability in multicomponent alloys. We focus on the case of Al-O-N alloys where the formation of aluminum vacancies in wurtzite AlN upon the incorporation of substitutional oxygen can be seen as a general mechanism of solids where crystal symmetry is reduced to stabilize defects. The ideal AlN wurtzite crystal structure occupation cannot be matched due to the presence of an aliovalent hetero-element into the structure. The traditional interpretation of the c-lattice shrinkage in sputter-deposited Al-O-N films from X-ray diffraction (XRD) experiments suggests the existence of a solubility limit at 8 at % oxygen content. Here, we show that such naive interpretation is misleading. We support XRD data with accurate ab initio modeling and dimensionality reduction on advanced structural descriptors to map structure-property relationships. No signs of a possible solubility limit are found. Instead, the presence of a wide range of non-equilibrium oxygen-rich defective structures emerging at increasing oxygen contents suggests that the formation of grain boundaries is the most plausible mechanism responsible for the lattice shrinkage measured in Al-O-N sputtered films. We further confirm our hypothesis using positron annihilation lifetime spectroscopy.

4.
Rev Sci Instrum ; 91(7): 071101, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32752869

ABSTRACT

Research in new quantum materials requires multi-mode measurements spanning length scales, correlations of atomic-scale variables with a macroscopic function, and spectroscopic energy resolution obtainable only at millikelvin temperatures, typically in a dilution refrigerator. In this article, we describe a multi-mode instrument achieving a µeV tunneling resolution with in-operando measurement capabilities of scanning tunneling microscopy, atomic force microscopy, and magnetotransport inside a dilution refrigerator operating at 10 mK. We describe the system in detail including a new scanning probe microscope module design and sample and tip transport systems, along with wiring, radio-frequency filtering, and electronics. Extensive benchmarking measurements were performed using superconductor-insulator-superconductor tunnel junctions, with Josephson tunneling as a noise metering detector. After extensive testing and optimization, we have achieved less than 8 µeV instrument resolving capability for tunneling spectroscopy, which is 5-10 times better than previous instrument reports and comparable to the quantum and thermal limits set by the operating temperature at 10 mK.

5.
Nano Lett ; 19(5): 3169-3175, 2019 05 08.
Article in English | MEDLINE | ID: mdl-30935207

ABSTRACT

Skyrmion imaging and electrical detection via topological Hall (TH) effect are two primary techniques for probing magnetic skyrmions, which hold promise for next-generation magnetic storage. However, these two kinds of complementary techniques have rarely been employed to investigate the same samples. We report the observation of nanoscale skyrmions in SrIrO3/SrRuO3 (SIO/SRO) bilayers in a wide temperature range from 10 to 100 K. The SIO/SRO bilayers exhibit a remarkable TH effect, which is up to 200% larger than the anomalous Hall (AH) effect at 5 K, and zero-field TH effect at 90 K. Using variable-temperature, high-field magnetic force microscopy (MFM), we imaged skyrmions as small as 10 nm, which emerge in the same field ranges as the TH effect. These results reveal a rich space for skyrmion exploration and tunability in oxide heterostructures.

6.
Sci Rep ; 9(1): 3114, 2019 Feb 28.
Article in English | MEDLINE | ID: mdl-30816268

ABSTRACT

The current-driven motion of skyrmions in MnSi and FeGe thinned single crystals could be initiated at current densities of the order of 106 A/m2, five orders of magnitude smaller than for magnetic domain walls. The technologically crucial step of replicating these results in thin films has not been successful to-date, but the reasons are not clear. Elucidating them requires analyzing system characteristics at scales of few nm where the key Dzyaloshinskii-Moriya (DM) interactions vary, and doing so in near-application conditions, i.e. in systems at room temperature, capped with additional layers for oxidation protection. In this work's magnetic force microscopy (MFM) studies of magnetron-sputtered Ir/Co/Pt-multilayers we show skyrmions that are smaller than previously observed, are not circularly symmetric, and are pinned to 50-nm wide areas where the DM interaction is higher than average. This finding matches our measurement of inhomogeneity of the magnetic moment areal density, which amounts to a standard deviation of the Co layer thickness of 0.3 monolayers in our 0.6 nm thick Co layers. This likely originates in small Co layer thickness variation and alloying. These film characteristics must be controlled with greater precision to preclude skyrmion pinning.

7.
ACS Appl Mater Interfaces ; 10(45): 39100-39106, 2018 Nov 14.
Article in English | MEDLINE | ID: mdl-30335938

ABSTRACT

The redistribution of ions in light-emitting electrochemical cells (LECs) plays a key role in their functionality. The direct quantitative mapping of ion density distributions in operating realistic sandwich-type devices, however, has not been experimentally achieved. Here we operate high-performing [Super Yellow/trimethylolpropane ethoxylate/lithium trifluoromethanesulfonate (Li+CF3SO3-)] LEC devices inside a time-of-flight secondary ion mass spectrometer and cool the devices after different operation times to liquid nitrogen temperatures before depth profiling is performed. The results reveal the dependence of the elemental and molecular distributions across the device layer on operation conditions. We find that the ion displacements lead to a substantial shift of the local chemical equilibria governing the free ion concentration.

8.
Nano Lett ; 18(4): 2263-2267, 2018 04 11.
Article in English | MEDLINE | ID: mdl-29543463

ABSTRACT

Mallinson's idea that some spin textures in planar magnetic structures could produce an enhancement of the magnetic flux on one side of the plane at the expense of the other gave rise to permanent magnet configurations known as Halbach magnet arrays. Applications range from wiggler magnets in particle accelerators and free electron lasers to motors and magnetic levitation trains, but exploiting Halbach arrays in micro- or nanoscale spintronics devices requires solving the problem of fabrication and field metrology below a 100 µm size. In this work, we show that a Halbach configuration of moments can be obtained over areas as small as 1 µm × 1 µm in sputtered thin films with Néel-type domain walls of unique domain wall chirality, and we measure their stray field at a controlled probe-sample distance of 12.0 ± 0.5 nm. Because here chirality is determined by the interfacial Dyzaloshinkii-Moriya interaction, the field attenuation and amplification is an intrinsic property of this film, allowing for flexibility of design based on an appropriate definition of magnetic domains. Skyrmions (<100 nm wide) illustrate the smallest kind of such structures, for which our measurement of stray magnetic fields and mapping of the spin structure shows they funnel the field toward one specific side of the film given by the sign of the Dyzaloshinkii-Moriya interaction parameter D.

9.
Nanotechnology ; 27(23): 235705, 2016 Jun 10.
Article in English | MEDLINE | ID: mdl-27146329

ABSTRACT

The combination of complementary measurement techniques has become a frequent approach to improve scientific knowledge. Pairing of the high lateral resolution scanning force microscopy (SFM) with the spectroscopic information accessible through scanning transmission soft x-ray microscopy (STXM) permits assessing physical and chemical material properties with high spatial resolution. We present progress from the NanoXAS instrument towards using an SFM probe as an x-ray detector for STXM measurements. Just by the variation of one parameter, the SFM probe can be utilised to detect either sample photo-emitted electrons or transmitted photons. This allows the use of a single probe to detect electrons, photons and physical forces of interest. We also show recent progress and demonstrate the current limitations of using a high aspect ratio coaxial SFM probe to detect photo-emitted electrons with very high lateral resolution. Novel probe designs are proposed to further progress in using an SFM probe as a STXM detector.

10.
Sci Rep ; 4: 4508, 2014 Mar 28.
Article in English | MEDLINE | ID: mdl-24676050

ABSTRACT

Models of exchange-bias in thin films have been able to describe various aspects of this technologically relevant effect. Through appropriate choices of free parameters the modelled hysteresis loops adequately match experiment, and typical domain structures can be simulated. However, the use of these parameters, notably the coupling strength between the systems' ferromagnetic (F) and antiferromagnetic (AF) layers, obscures conclusions about their influence on the magnetization reversal processes. Here we develop a 2D phase-field model of the magnetization process in exchange-biased CoO/(Co/Pt)×n that incorporates the 10 nm-resolved measured local biasing characteristics of the antiferromagnet. Just three interrelated parameters set to measured physical quantities of the ferromagnet and the measured density of uncompensated spins thus suffice to match the experiment in microscopic and macroscopic detail. We use the model to study changes in bias and coercivity caused by different distributions of pinned uncompensated spins of the antiferromagnet, in application-relevant situations where domain wall motion dominates the ferromagnetic reversal. We show the excess coercivity can arise solely from inhomogeneity in the density of biasing- and anti-biasing pinned uncompensated spins in the antiferromagnet. Counter to conventional wisdom, irreversible processes in the latter are not essential.

11.
Nanotechnology ; 23(47): 475708, 2012 Nov 30.
Article in English | MEDLINE | ID: mdl-23117254

ABSTRACT

A combined x-ray transmission and scanning force microscope setup (NanoXAS) recently installed at a dedicated beamline of the Swiss Light Source combines complementary experimental techniques to access chemical and physical sample properties with nanometer scale resolution. While scanning force microscopy probes physical properties such as sample topography, local mechanical properties, adhesion, electric and magnetic properties on lateral scales even down to atomic resolution, scanning transmission x-ray microscopy offers direct access to the local chemical composition, electronic structure and magnetization. Here we present three studies which underline the advantages of complementary access to nanoscale properties in prototype thin film samples.

12.
J Am Chem Soc ; 133(15): 5689-91, 2011 Apr 20.
Article in English | MEDLINE | ID: mdl-21443208

ABSTRACT

A single propene molecule, located in the junction between the tip of a scanning tunneling microscope (STM) and a Cu(211) surface can be dehydrogenated by inelastic electron tunneling. This reaction requires excitation of the asymmetric C-H stretching vibration of the ═CH(2) group. The product is then identified by inelastic electron tunneling action spectroscopy (IETAS).

13.
Angew Chem Int Ed Engl ; 48(22): 4065-8, 2009.
Article in English | MEDLINE | ID: mdl-19206131

ABSTRACT

Pumped up: Propene molecules form chiral complexes when adsorbed on a copper surface. Inelastically scattered tunneling electrons from the tip of a scanning tunneling microscope induce rotation or diffusion of the adsorbate on the surface. Higher tunneling currents can lead to conversion of the adsorbate into the opposite enantiomer.

14.
Phys Rev Lett ; 100(23): 236106, 2008 Jun 13.
Article in English | MEDLINE | ID: mdl-18643523

ABSTRACT

Atomistic simulations considering larger tip structures than hitherto assumed reveal novel dissipation mechanisms in noncontact atomic force microscopy. The potential energy surfaces of realistic silicon tips exhibit many energetically close local minima that correspond to different structures. Most of them easily deform, thus causing dissipation arising from hysteresis in force versus distance characteristics. Furthermore, saddle points which connect local minima can suddenly switch to connect different minima. Configurations driven into metastability by the tip motion can thus suddenly access lower energy structures when thermal activation becomes allowed within the time required to detect the resulting average dissipation.

15.
J Am Chem Soc ; 127(50): 17863-6, 2005 Dec 21.
Article in English | MEDLINE | ID: mdl-16351117

ABSTRACT

Recent advances in dynamic force microscopy show that it is possible to measure the forces between atomically sharp tips and particular atomic positions on surfaces as a function of distance. However, on most ionic surfaces, the positive and negative ions can so far not be distinguished. In this paper, we use the CaF2(111) surface, where atomic resolution force microscopy has allowed identification of the positions of the Ca2+ and F- ions in the obtained images, to demonstrate that short-range interaction forces can be measured selectively above chemically identified surface sites. Combining experimental and theoretical results allows a quantification of the strength and distance dependence of the interaction of a tip-terminating cluster with particular surface ions and reveals details of cluster and surface relaxation. Further development of this approach will provide new insight into mechanisms of chemical bond formation between clusters, cluster deposition at surfaces, processes in adhesion and tribology, and single atom manipulation with the force microscope.

SELECTION OF CITATIONS
SEARCH DETAIL
...