Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Microorganisms ; 11(9)2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37764082

ABSTRACT

Fecal microbiota transplantation (FMT) is under investigation for several indications, including ulcerative colitis (UC). The clinical success of FMT depends partly on the engraftment of viable bacteria. Because the vast majority of human gut microbiota consists of anaerobes, the currently used aerobic processing protocols of donor stool may diminish the bacterial viability of transplanted material. This study assessed the effect of four processing techniques for donor stool (i.e., anaerobic and aerobic, both direct processing and after temporary cool storage) on bacterial viability. By combining anaerobic culturing on customized media for anaerobes with 16S rRNA sequencing, we could successfully culture and identify the majority of the bacteria present in raw fecal suspensions. We show that direct anaerobic processing of donor stool is superior to aerobic processing conditions for preserving the bacterial viability of obligate anaerobes and butyrate-producing bacteria related to the clinical response to FMT in ulcerative colitis patients, including Faecalibacterium, Eubacterium hallii, and Blautia. The effect of oxygen exposure during stool processing decreased when the samples were stored long-term. Our results confirm the importance of sample conditioning to preserve the bacterial viability of oxygen-sensitive gut bacteria. Anaerobic processing of donor stool may lead to increased clinical success of FMT, which should further be investigated in clinical trials.

2.
Gut Microbes ; 14(1): 2035660, 2022.
Article in English | MEDLINE | ID: mdl-35188867

ABSTRACT

The gut microbiota strongly impacts the development of sporadic colorectal cancer (CRC), but it is largely unknown how the microbiota affects the pathogenesis of mismatch-repair-deficient CRC in the context of Lynch syndrome. In a mouse model for Lynch syndrome, we found a nearly complete loss of intestinal tumor development when animals were transferred from a conventional "open" animal facility to specific-pathogen-free (SPF) conditions. Using 16S sequencing we detected large changes in microbiota composition between the two facilities. Transcriptomic analyses of tumor-free intestinal tissues showed signs of strong intestinal inflammation in conventional mice. Whole exome sequencing of tumors developing in Msh2-Lynch mice revealed a much lower mutational load in the single SPF tumor than in tumors developing in conventional mice, suggesting reduced epithelial proliferation in SPF mice. Fecal microbiota transplantations with conventional feces altered the immune landscape and gut homeostasis, illustrated by increased gut length and elevated epithelial proliferation and migration. This was associated with drastic changes in microbiota composition, in particular increased relative abundances of different mucus-degrading taxa such as Desulfovibrio and Akkermansia, and increased bacterial-epithelial contact. Strikingly, transplantation of conventional microbiota increased microsatellite instability in untransformed intestinal epithelium of Msh2-Lynch mice, indicating that the composition of the microbiota influences the rate of mutagenesis in MSH2-deficient crypts.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis , Gastrointestinal Microbiome , Animals , Colorectal Neoplasms, Hereditary Nonpolyposis/diagnosis , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/pathology , Disease Models, Animal , Mice , MutS Homolog 2 Protein/genetics , Mutagenesis , Mutagens
3.
Sci Rep ; 12(1): 2698, 2022 02 17.
Article in English | MEDLINE | ID: mdl-35177690

ABSTRACT

Postmenopausal women and renal transplant recipients are at increased risk of recurrent urinary tract infections (RUTI). Urine and vaginal microbiota of premenopausal controls (N = 18) and RUTI cases (18), and of postmenopausal controls (30) and RUTI cases (20) with and without a renal transplant, were characterized using 16S rRNA sequencing. Participants did not have UTI symptoms at the time of sampling. Gram-negative uropathobionts (predominantly Escherichia/Shigella, Pseudomonas, Klebsiella, and Acinetobacter) had a much higher mean relative abundance in urine than vaginal samples, especially in premenopausal women. No statistically significant differences in mean relative abundances of bacterial groups were found within the premenopausal group or within the postmenopausal group by RUTI or renal transplant status without chronic antibiotic use. Comparing postmenopausal to premenopausal women, mean relative abundances of lactobacilli (especially L. crispatus) in urine and vaginal samples and of Gram-negative uropathobionts in urine were lower, and of BV-anaerobes and Gram-positive uropathobionts in urine and vaginal samples were higher. While RUTI in premenopausal women is predominantly caused by Escherichia, the causative organisms in postmenopausal women are likely more diverse. The relative importance of individual organisms is currently unknown. We recommend that future studies, including intervention studies, include longitudinal microbiota assessments.


Subject(s)
Kidney Transplantation/adverse effects , Postmenopause/urine , Premenopause/urine , Urinary Tract Infections/microbiology , Urine/microbiology , Vagina/microbiology , Adolescent , Adult , Aged , Bacteria/genetics , Female , Humans , Microbiota/genetics , Middle Aged , RNA, Ribosomal, 16S/analysis , Young Adult
4.
Clin Infect Dis ; 74(5): 776-784, 2022 03 09.
Article in English | MEDLINE | ID: mdl-34156449

ABSTRACT

BACKGROUND: Viruses and bacteria from the nasopharynx are capable of causing community-acquired pneumonia (CAP), which can be difficult to diagnose. We aimed to investigate whether shifts in the composition of these nasopharyngeal microbial communities can be used as diagnostic biomarkers for CAP in adults. METHODS: We collected nasopharyngeal swabs from adult CAP patients and controls without infection in a prospective multicenter case-control study design. We generated bacterial and viral profiles using 16S ribosomal RNA gene sequencing and multiplex polymerase chain reaction (PCR), respectively. Bacterial, viral, and clinical data were subsequently used as inputs for extremely randomized trees classification models aiming to distinguish subjects with CAP from healthy controls. RESULTS: We enrolled 117 cases and 48 control subjects. Cases displayed significant beta diversity differences in nasopharyngeal microbiota (P = .016, R2 = .01) compared to healthy controls. Our extremely randomized trees classification models accurately discriminated CAP caused by bacteria (area under the curve [AUC] .83), viruses (AUC .95) or mixed origin (AUC .81) from healthy control subjects. We validated this approach using a dataset of nasopharyngeal samples from 140 influenza patients and 38 controls, which yielded highly accurate (AUC .93) separation between cases and controls. CONCLUSIONS: Relative proportions of different bacteria and viruses in the nasopharynx can be leveraged to diagnose CAP and identify etiologic agent(s) in adult patients. Such data can inform the development of a microbiota-based diagnostic panel used to identify CAP patients and causative agents from nasopharyngeal samples, potentially improving diagnostic specificity, efficiency, and antimicrobial stewardship practices.


Subject(s)
Community-Acquired Infections , Microbiota , Respiratory Tract Infections , Adult , Bacteria/genetics , Case-Control Studies , Community-Acquired Infections/diagnosis , Humans , Microbiota/genetics , Nasopharynx/microbiology , Prospective Studies , Respiratory System/microbiology
5.
Gut Microbes ; 13(1): 1995279, 2021.
Article in English | MEDLINE | ID: mdl-34743654

ABSTRACT

Bacterial gut communities might predispose children to develop asthma. Yet, little is known about the role of these micro-organisms in adult asthmatics. We aimed to profile the relationship between fecal microbiota and asthma in a large-scale, ethnically diverse, observational cohort of adults. Fecal microbiota composition of 1632 adults (172 asthmatics and 1460 non-asthmatics) was analyzed using 16S ribosomal RNA gene sequencing. Using extremely randomized trees machine learning models, we assessed the discriminatory ability of gut bacterial features to identify asthmatics from non-asthmatics. Asthma contributed 0.019% to interindividual dissimilarities in intestinal microbiota composition, which was not significant (P = .97). Asthmatics could not be distinguished from non-asthmatics based on individual microbiota composition by an extremely randomized trees classifier model (area under the receiver operating characteristic curve = 0.54). In conclusion, there were no prominent differences in fecal microbiota composition in adult asthmatics when compared to non-asthmatics in an urban, large-sized and ethnically diverse cohort.


Subject(s)
Asthma/microbiology , Bacteria/isolation & purification , Gastrointestinal Microbiome , Adult , Aged , Asthma/ethnology , Asthma/immunology , Bacteria/classification , Bacteria/genetics , Cohort Studies , Feces/microbiology , Female , Humans , Male , Middle Aged , Netherlands/ethnology , Young Adult
6.
EClinicalMedicine ; 39: 101074, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34611613

ABSTRACT

Background Bacterial intestinal communities interact with the immune system and may contribute to protection against community-acquired pneumonia (CAP). Intestinal viruses are closely integrated with these bacterial communities, yet the composition and clinical significance of these communities in CAP patients are unknown. The aims of this exploratory study were to characterise the composition of the rectal bacteriome and virome at hospital admission for CAP, and to determine if microbiota signatures correlate with clinical outcomes. Methods We performed a prospective observational cohort study in CAP patients, admitted to a university or community hospital in the Netherlands between October 2016 and July 2018, and controls. Rectal bacteriome and virome composition were characterised using 16S ribosomal RNA gene sequencing and virus discovery next-generation sequencing, respectively. Unsupervised multi-omics factor analysis was used to assess the co-variation of bacterial and viral communities, which served as primary predictor. The clinical outcomes of interest were the time to clinical stability and the length of hospital stay. Findings 64 patients and 38 controls were analysed. Rectal bacterial alpha (p = 0•0015) and beta diversity (r2 =0•023, p = 0•004) of CAP patients differed from controls. Bacterial and viral microbiota signatures correlated with the time to clinical stability (hazard ratio 0•43, 95% confidence interval 0•20-0•93, p = 0•032) and the length of hospital stay (hazard ratio 0•37, 95% confidence interval 0•17-0•81, p = 0•012), although only the latter remained significant following p-value adjustment for examining multiple candidate cut-points (p = 0•12 and p = 0•046, respectively). Interpretation This exploratory study provides preliminary evidence that intestinal bacteriome and virome signatures could be linked with clinical outcomes in CAP. Such exploratory data, when validated in independent cohorts, could inform the development of a microbiota-based diagnostic panel used to predict clinical outcomes in CAP. Funding Netherlands Organization for Scientific Research and Netherlands Organization for Health Research and Development.

7.
Intensive Care Med Exp ; 9(1): 35, 2021 Jul 12.
Article in English | MEDLINE | ID: mdl-34250564

ABSTRACT

BACKGROUND: The gut microbiome plays a protective role in the host defense against pneumonia. The composition of the lung microbiota has been shown to be predictive of clinical outcome in critically ill patients. However, the dynamics of the lung and gut microbiota composition over time during severe pneumonia remains ill defined. We used a mouse model of pneumonia-derived sepsis caused by Klebsiella pneumoniae in order to follow the pathogen burden as well as the composition of the lung, tongue and fecal microbiota from local infection towards systemic spread. RESULTS: Already at 6 h post-inoculation with K. pneumoniae, marked changes in the lung microbiota were seen. The alpha diversity of the lung microbiota did not change throughout the infection, whereas the beta diversity did. A shift between the prominent lung microbiota members of Streptococcus and Klebsiella was seen from 12 h onwards and was most pronounced at 18 h post-inoculation (PI) which was also reflected in the release of pro-inflammatory cytokines indicating severe pulmonary inflammation. Around 18 h PI, K. pneumoniae bacteremia was observed together with a systemic inflammatory response. The composition of the tongue microbiota was not affected during infection, even at 18-30 h PI when K. pneumoniae had become the dominant bacterium in the lung. Moreover, we observed differences in the gut microbiota during pulmonary infection. The gut microbiota contributed to the lung microbiota at 12 h PI, however, this decreased at a later stage of the infection. CONCLUSIONS: At 18 h PI, K. pneumoniae was the dominant member in the lung microbiota. The lung microbiota profiles were significantly explained by the lung K. pneumoniae bacterial counts and Klebsiella and Streptococcus were correlating with the measured cytokine levels in the lung and/or blood. The oral microbiota in mice, however, was not influenced by the severity of murine pneumonia, whereas the gut microbiota was affected. This study is of significance for future studies investigating the role of the lung microbiota during pneumonia and sepsis.

8.
J Microbiol Methods ; 185: 106204, 2021 06.
Article in English | MEDLINE | ID: mdl-33872639

ABSTRACT

We evaluated a novel 'protected' biopsy method to reliably ascertain the spatial distribution of the mucosa-adherent colonic microbiota. Apart from minor differences at genus level, overall similarities along the colon were high between the various areas, irrespective of protected or unprotected sampling.


Subject(s)
Biopsy/methods , Colon/microbiology , Gastrointestinal Microbiome/physiology , Intestinal Mucosa/microbiology , Adult , Aged , Anemia, Iron-Deficiency , Biopsy/instrumentation , Female , Gastrointestinal Microbiome/genetics , Humans , Male , Middle Aged , RNA, Ribosomal, 16S , Specimen Handling/methods
9.
mSystems ; 6(2)2021 Mar 16.
Article in English | MEDLINE | ID: mdl-33727397

ABSTRACT

Bacterial microbiota play a critical role in mediating local and systemic immunity, and shifts in these microbial communities have been linked to impaired outcomes in critical illness. Emerging data indicate that other intestinal organisms, including bacteriophages, viruses of eukaryotes, fungi, and protozoa, are closely interlinked with the bacterial microbiota and their host, yet their collective role during antibiotic perturbation and critical illness remains to be elucidated. We employed multi-omics factor analysis (MOFA) to systematically integrate the bacterial (16S rRNA), fungal (intergenic transcribed spacer 1 rRNA), and viral (virus discovery next-generation sequencing) components of the intestinal microbiota of 33 critically ill patients with and without sepsis and 13 healthy volunteers. In addition, we quantified the absolute abundances of bacteria and fungi using 16S and 18S rRNA PCRs and characterized the short-chain fatty acids (SCFAs) butyrate, acetate, and propionate using nuclear magnetic resonance spectroscopy. We observe that a loss of the anaerobic intestinal environment is directly correlated with an overgrowth of aerobic pathobionts and their corresponding bacteriophages as well as an absolute enrichment of opportunistic yeasts capable of causing invasive disease. We also observed a strong depletion of SCFAs in both disease states, which was associated with an increased absolute abundance of fungi with respect to bacteria. Therefore, these findings illustrate the complexity of transkingdom changes following disruption of the intestinal bacterial microbiome.IMPORTANCE While numerous studies have characterized antibiotic-induced disruptions of the bacterial microbiome, few studies describe how these disruptions impact the composition of other kingdoms such as viruses, fungi, and protozoa. To address this knowledge gap, we employed MOFA to systematically integrate viral, fungal, and bacterial sequence data from critically ill patients (with and without sepsis) and healthy volunteers, both prior to and following exposure to broad-spectrum antibiotics. In doing so, we show that modulation of the bacterial component of the microbiome has implications extending beyond this kingdom alone, enabling the overgrowth of potentially invasive fungi and viruses. While numerous preclinical studies have described similar findings in vitro, we confirm these observations in humans using an integrative analytic approach. These findings underscore the potential value of multi-omics data integration tools in interrogating how different components of the microbiota contribute to disease states. In addition, our findings suggest that there is value in further studying potential adjunctive therapies using anaerobic bacteria or SCFAs to reduce fungal expansion after antibiotic exposure, which could ultimately lead to improved outcomes in the intensive care unit (ICU).

10.
Transl Stroke Res ; 12(4): 581-592, 2021 08.
Article in English | MEDLINE | ID: mdl-33052545

ABSTRACT

In recent years, preclinical studies have illustrated the potential role of intestinal bacterial composition in the risk of stroke and post-stroke infections. The results of these studies suggest that bacteria capable of producing volatile metabolites, including trimethylamine-N-oxide (TMAO) and butyrate, play opposing, yet important roles in the cascade of events leading to stroke. However, no large-scale studies have been undertaken to determine the abundance of these bacterial communities in stroke patients and to assess the impact of disrupted compositions of the intestinal microbiota on patient outcomes. In this prospective case-control study, rectal swabs from 349 ischemic and hemorrhagic stroke patients (median age, 71 years; IQR: 67-75) were collected within 24 h of hospital admission. Samples were subjected to 16S rRNA amplicon sequencing and subsequently compared with samples obtained from 51 outpatient age- and sex-matched controls (median age, 72 years; IQR, 62-80) with similar cardiovascular risk profiles but without active signs of stroke. Plasma protein biomarkers were analyzed using a combination of nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography-mass spectrometry (LC-MS). Alpha and beta diversity analyses revealed higher disruption of intestinal communities during ischemic and hemorrhagic stroke compared with non-stroke matched control subjects. Additionally, we observed an enrichment of bacteria implicated in TMAO production and a loss of butyrate-producing bacteria. Stroke patients displayed two-fold lower plasma levels of TMAO than controls (median 1.97 vs 4.03 µM, Wilcoxon p < 0.0001). Finally, lower abundance of butyrate-producing bacteria within 24 h of hospital admission was an independent predictor of enhanced risk of post-stroke infection (odds ratio 0.77, p = 0.005), but not of mortality or functional patient outcome. In conclusion, aberrations in trimethylamine- and butyrate-producing gut bacteria are associated with stroke and stroke-associated infections.


Subject(s)
Gastrointestinal Microbiome , Aged , Anaerobiosis , Bacteria , Case-Control Studies , Humans , RNA, Ribosomal, 16S/genetics
11.
PLoS One ; 15(11): e0241748, 2020.
Article in English | MEDLINE | ID: mdl-33147273

ABSTRACT

BACKGROUND: An increasing body of evidence is indicating that the gut microbiota modulates pulmonary inflammatory responses. This so-called gut-lung axis might be of importance in a whole spectrum of inflammatory pulmonary diseases such as acute respiratory distress syndrome, chronic obstructive pulmonary disease and pneumonia. Here, we investigate the effect of antibiotic disruption of gut microbiota on immune responses in the lung after a intranasal challenge with lipopolysaccharide (LPS). METHODS/RESULTS: C57Bl/6 mice were treated for two weeks with broad-spectrum antibiotics supplemented to their drinking water. Afterwards, mice and untreated control mice were inoculated intranasally with LPS. Mice were sacrificed 2 and 6 hours post-challenge, after which bronchoalveolar lavage fluid (BALF) and lung tissues were taken. Gut microbiota analysis showed that antibiotic-treated mice had a pronounced reduction in numbers and diversity of bacteria. A modest, but time consistent, significant increase of interleukin (IL)-6 release was seen in BALF of antibiotic treated mice. Release of tumor necrosis factor alpha (TNFα), however, was not statistically different between groups. CONCLUSION: Antibiotic induced microbiota disruption is associated with alterations in host responses during LPS-induced lung inflammation. Further studies are required to determine the clinical relevance of the gut-lung axis in pulmonary infection and inflammation.


Subject(s)
Acute Lung Injury/etiology , Anti-Bacterial Agents/pharmacology , Gastrointestinal Microbiome/drug effects , Lipopolysaccharides/toxicity , Animals , Bronchoalveolar Lavage Fluid/chemistry , Female , Interleukin-6/metabolism , Lung/pathology , Mice , Mice, Inbred C57BL
12.
Intensive Care Med Exp ; 8(1): 47, 2020 Aug 25.
Article in English | MEDLINE | ID: mdl-32840685

ABSTRACT

BACKGROUND: The microbiome has emerged as an important player in the pathophysiology of a whole spectrum of diseases that affect the critically ill. We hypothesized that differences in microbiota composition across vendors can influence murine models of pulmonary lipopolysaccharide (LPS) inflammation and Gram-negative pneumonia. METHODS: A multi-vendor approach was used with genetically similar mice derived from three different vendors (Janvier, Envigo, Charles River). This model was employed to study the effect on the host response to a pulmonary LPS challenge (1 µg Klebsiella pneumoniae LPS, intranasal), as well as experimental K. pneumoniae infection (ATCC43816, 1 × 104 CFU, intranasal). RESULTS: Gut microbiota analysis revealed profound intervendor differences in bacterial composition as shown by beta diversity and at various taxonomic levels. Tumor necrosis factor (TNF)-α and interleukin (IL)-6 release in lung and bronchoalveolar lavage fluid (BALF) were determined 6 and 24 h after intranasal treatment with LPS. No differences were found between the groups, with the exception for Envigo, showing a higher level of TNFα in lung and BALF at 6 h compared to Janvier and Charles River. In another set of experiments, mice from different vendors were subjected to a clinically relevant model of Gram-negative pneumonia (K. pneumoniae). At 12 and 36 h post-infection, no intervendor differences were found in bacterial dissemination, or TNFα and IL-6 levels in the lungs. In line, markers for organ failure did not differ between groups. CONCLUSIONS: Although there was a marked variation in the gut microbiota composition of mice from different vendors, the hypothesized impact on our models of pulmonary inflammation and severe pneumonia was limited. This is of significance for experimental settings, showing that differences in gut microbiota do not have to lead to differences in outcome.

13.
PLoS Negl Trop Dis ; 13(6): e0007402, 2019 06.
Article in English | MEDLINE | ID: mdl-31199807

ABSTRACT

BACKGROUND: The soil-dwelling bacillus Burkholderia pseudomallei is the etiological-agent of the neglected and life-threatening emerging infection melioidosis. The distribution of B. pseudomallei in West Africa is unknown. In the present study we aimed to determine whether B. pseudomallei and B. thailandensis are present in the environment of central Sierra Leone. METHODOLOGY/PRINCIPAL FINDINGS: In June-July 2017, we conducted an environmental surveillance study-designed in accordance with existing consensus guidelines-in central Sierra Leone. A total of 1,000 soil samples (100 per site) were collected and cultured. B. pseudomallei was not identified in the soil, but we identified seven novel B. thailandensis sequence types with multi-locus sequence typing (MLST) and 16S rRNA gene sequence analyses. CONCLUSIONS/SIGNIFICANCE: The presence of B. pseudomallei was not demonstrated, however, multiple novel B. thailandensis sequence types were identified. More environmental and sequencing studies are needed to further understand the genetic diversity, evolution and virulence of these emerging organisms.


Subject(s)
Burkholderia/classification , Burkholderia/isolation & purification , Genotype , Soil Microbiology , Burkholderia Infections , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Multilocus Sequence Typing , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sierra Leone
14.
Int J Nephrol Renovasc Dis ; 12: 87-101, 2019.
Article in English | MEDLINE | ID: mdl-31123416

ABSTRACT

Background: Chronic kidney disease (CKD) is associated with a decreased intestinal barrier function, causing bacterial translocation over the intestinal wall and triggering a systemic inflammatory response. Butyrate, a short-chain fatty acid produced by certain bacterial strains, is considered instrumental to keep the intestinal barrier intact. There are indications that a decreased amount of these specific bacterial species is part of the cause of the decreased intestinal barrier function in CKD. The aim of this study is (i) to determine if Dutch patients with end-stage renal disease (ESRD) have a decreased amount of butyrate-producing species and butyrate-producing capacity and (ii) whether this correlates with systemic inflammation. Methods: We used qPCR to evaluate the most abundant butyrate-producing species F. prauznitzii, E. rectale and Roseburia spp. and the BCoAT gene, which reflects the butyrogenic capacity of the intestinal microbiota. Fecal samples were collected from healthy kidney donors (n=15), preemptive renal transplant recipients (n=4) and dialysis patients (n=31). Markers of inflammation (CRP and IL-6) and intestinal permeability (D-lactate) were measured in plasma. Results: Patients with ESRD did not have a significantly decreased amount F. prauznitzii, E. rectale and Roseburia spp. or the BCoAT gene. Neither was there a significant correlation with CRP, IL-6 or D-lactate. On the individual level, there were some patients with decreased BCoAT levels and increased levels of CRP, IL-6 and D-lactate. Conclusions: Patients with ESRD do not have a decreased amount of the most abundant butyrate-producing species nor a decreased butyrate-producing capacity.

15.
Sci Rep ; 9(1): 1437, 2019 02 05.
Article in English | MEDLINE | ID: mdl-30723224

ABSTRACT

Aging significantly increases the vulnerability to gastrointestinal (GI) disorders but there are few studies investigating the key factors in aging that affect the GI tract. To address this knowledge gap, we used 10-week- and 19-month-old litter-mate mice to investigate microbiota and host gene expression changes in association with ageing. In aged mice the thickness of the colonic mucus layer was reduced about 6-fold relative to young mice, and more easily penetrable by luminal bacteria. This was linked to increased apoptosis of goblet cells in the upper part of the crypts. The barrier function of the small intestinal mucus was also compromised and the microbiota were frequently observed in contact with the villus epithelium. Antimicrobial Paneth cell factors Ang4 and lysozyme were expressed in significantly reduced amounts. These barrier defects were accompanied by major changes in the faecal microbiota and significantly decreased abundance of Akkermansia muciniphila which is strongly and negatively affected by old age in humans. Transcriptomics revealed age-associated decreases in the expression of immunity and other genes in intestinal mucosal tissue, including decreased T cell-specific transcripts and T cell signalling pathways. The physiological and immunological changes we observed in the intestine in old age, could have major consequences beyond the gut.


Subject(s)
Aging/metabolism , Gastrointestinal Microbiome , Intestinal Mucosa/microbiology , Aging/immunology , Animals , Intestinal Mucosa/cytology , Intestinal Mucosa/growth & development , Intestinal Mucosa/immunology , Male , Mice , Mice, Inbred C57BL , Muramidase/genetics , Muramidase/metabolism , Paneth Cells/metabolism , Ribonuclease, Pancreatic/genetics , Ribonuclease, Pancreatic/metabolism , T-Lymphocytes/metabolism , Transcriptome
16.
J Antimicrob Chemother ; 74(3): 782-786, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30418539

ABSTRACT

OBJECTIVES: The impact of combination antibiotic therapy on the composition of the intestinal microbiota remains ill-defined. We aimed to assess the effect of a 1 week antibiotic regimen on the intestinal microbiota of healthy humans for a period of up to 31 months. PATIENTS AND METHODS: Thirteen healthy adult men received either no treatment or oral broad-spectrum antibiotics (ciprofloxacin, vancomycin and metronidazole) for 7 days. At four timepoints (prior to treatment, on day 9, day 49 and 8-31 months later) faecal samples were collected and analysed using 16S RNA gene sequencing. RESULTS: The short-term impact of broad-spectrum antibiotics on the gut microbiota was profound, with a loss of diversity and drastic shifts in community composition. In addition, antibiotics significantly reduced the abundance of bacterial taxa with important metabolic functions, such as the production of butyrate. The microbiota showed a remarkable return towards baseline after 8-31 months, but community composition often remained altered from its initial state. CONCLUSIONS: These findings suggest that combined treatment with vancomycin, ciprofloxacin and metronidazole has a profound and long-lasting effect on microbiota composition, the consequences of which remain largely unknown.


Subject(s)
Anti-Bacterial Agents/pharmacology , Ciprofloxacin/pharmacology , Gastrointestinal Microbiome/drug effects , Metronidazole/pharmacology , Vancomycin/pharmacology , Administration, Oral , Adolescent , Adult , Anti-Bacterial Agents/administration & dosage , Biodiversity , Ciprofloxacin/administration & dosage , Feces/microbiology , Healthy Volunteers , Humans , Male , Metronidazole/administration & dosage , Time Factors , Vancomycin/administration & dosage , Young Adult
17.
Clin Infect Dis ; 68(8): 1292-1299, 2019 04 08.
Article in English | MEDLINE | ID: mdl-30321312

ABSTRACT

BACKGROUND: The skin microbiota plays a key role in the pathogenesis of several skin diseases, but its role in cellulitis remains unknown. We investigated the skin microbiota in patients with cellulitis, studied whether its analysis could help determine the causative pathogen, and explored whether skin microbiota composition was associated with clinical outcomes. METHODS: We prospectively included 58 patients hospitalized for cellulitis. Skin swabs obtained from the lesion sites were compared with swabs from identical sites on the contralateral unaffected limbs and with swabs obtained from 19 age- and sex-matched control subjects without cellulitis. Bacterial profiling of the skin microbiota was performed by interspacer profiling (IS-pro). RESULTS: A large interpersonal variation in the skin microbiota composition of patients hospitalized with cellulitis was observed. Firmicutes were the dominant phylum, and Staphylococcus and Streptococcus the dominant genera. In most patients, a strong correlation between the microbiota of the affected lesion and the microbiota of the unaffected, contralateral limb was seen. Overall, the composition of the cellulitis microbiota could not be distinguished from the skin microbiota of controls. No consistent association could be found between traditional culture results and skin microbiota signatures in patients with cellulitis. Lastly, we found that neither microbiota composition nor diversity were associated with clinical parameters and outcomes in patients with cellulitis. CONCLUSIONS: In this exploratory study on the skin microbiota in patients hospitalized with cellulitis, we were unable to identify a typical cellulitis microbiota. The diagnostic and prognostic information that could be derived from skin microbiota profiling in this patient cohort was limited. CLINICAL TRIALS REGISTRATION: NCT02032654.


Subject(s)
Cellulitis/microbiology , Microbiota , Skin/microbiology , Adult , Aged , Cellulitis/blood , Female , Hospitalization , Humans , Male , Middle Aged , Prospective Studies , Randomized Controlled Trials as Topic
18.
Sci Rep ; 8(1): 13426, 2018 09 07.
Article in English | MEDLINE | ID: mdl-30194317

ABSTRACT

Physiological processes are differentially regulated between men and women. Sex and gut microbiota have each been demonstrated to regulate host metabolism, but it is unclear whether both factors are interdependent. Here, we determined to what extent sex-specific differences in lipid metabolism are modulated via the gut microbiota. While male and female Conv mice showed predominantly differential expression in gene sets related to lipid metabolism, GF mice showed differences in gene sets linked to gut health and inflammatory responses. This suggests that presence of the gut microbiota is important in sex-specific regulation of lipid metabolism. Further, we explored the role of bile acids as mediators in the cross-talk between the microbiome and host lipid metabolism. Females showed higher total and primary serum bile acids levels, independent of presence of microbiota. However, in presence of microbiota we observed higher secondary serum bile acid levels in females compared to males. Analysis of microbiota composition displayed sex-specific differences in Conv mice. Therefore, our data suggests that bile acids possibly play a role in the crosstalk between the microbiome and sex-specific regulation of lipid metabolism. In conclusion, our data shows that presence of the gut microbiota contributes to sex differences in lipid metabolism.


Subject(s)
Gastrointestinal Microbiome/physiology , Gene Expression Regulation/physiology , Lipid Metabolism/physiology , Sex Characteristics , Animals , Bile Acids and Salts/blood , Female , Male , Mice
19.
Sci Rep ; 8(1): 10001, 2018 07 03.
Article in English | MEDLINE | ID: mdl-29968760

ABSTRACT

Hormones and placental factors are thought to underlie the maternal immunological changes during pregnancy. However, as several intestinal microbiota are linked to immune modulations, we hypothesized that the intestinal microbiota are altered during pregnancy in favor of species associated with pregnancy associated immune modulations. We studied the fecal microbiota composition (MITchip) and intestinal and peripheral immune cells (microarray and flow cytometry) in pregnant and non-pregnant C57BL/6 and BALB/c mice. Pregnancy influenced intestinal microbiota diversity and composition, however in a mouse strain dependent way. Pregnant BALB/c mice had, among others, a relative higher abundance of Lactobacillus paracasei et rel., Roseburia intestinalis et rel. and Eubacterium hallii et rel., as compared to non-pregnant BALB/c mice, while the microbiota composition in B6 mice hardly changed during pregnancy. Additionally, intestinal immunological pathways were changed during pregnancy, however again in a mouse strain dependent way. Correlations between various bacteria and immunological genes were observed. Our data do support a role for the microbiome in changing immune responses in pregnancy. However, other factors are also involved, such as for instance changes in SCFA or changes in sensitivity to bacteria, since although immunological changes are observed in B6 mice, hardly any changes in microbiota were found in this strain. Follow up studies are needed to study the exact relationship between these parameters.


Subject(s)
Gastrointestinal Microbiome/genetics , Gastrointestinal Microbiome/physiology , Intestines/microbiology , Animals , Bacteria/genetics , Feces/microbiology , Female , Gastrointestinal Microbiome/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Microbiota , Pregnancy , Probiotics
20.
Biol Sex Differ ; 9(1): 26, 2018 06 18.
Article in English | MEDLINE | ID: mdl-29914546

ABSTRACT

BACKGROUND: A dysbiosis in the intestinal microbiome plays a role in the pathogenesis of several immunological diseases. These diseases often show a sex bias, suggesting sex differences in immune responses and in the intestinal microbiome. We hypothesized that sex differences in immune responses are associated with sex differences in microbiota composition. METHODS: Fecal microbiota composition (MITchip), mRNA expression in intestinal tissue (microarray), and immune cell populations in mesenteric lymph nodes (MLNs) were studied in male and female mice of two mouse strains (C57B1/6OlaHsd and Balb/cOlaHsd). Transcriptomics and microbiota data were combined to identify bacterial species which may potentially be related to sex-specific differences in intestinal immune related genes. RESULTS: We found clear sex differences in intestinal microbiota species, diversity, and richness in healthy mice. However, the nature of the sex effects appeared to be determined by the mouse strain as different bacterial species were enriched in males and females of the two strains. For example, Lactobacillus plantarum and Bacteroides distasonis were enriched in B6 females as compared to B6 males, while Bifidobacterium was enriched BALB/c females as compared to BALB/c males. The strain-dependent sex effects were also observed in the expression of immunological genes in the colon. We found that the abundance of various bacteria (e.g., Clostridium leptum et rel.) which were enriched in B6 females positively correlated with the expression of several genes (e.g., Il-2rb, Ccr3, and Cd80) which could be related to immunological functions, such as inflammatory responses and migration of leukocytes. The abundance of several bacteria (e.g., Faecalibacterium prausnitzii et rel. and Coprobacillus et rel.- Clostridium ramosum et rel.) which were enriched in BALB/c males positively correlated to the expression of several genes (e.g., Apoe, Il-1b, and Stat4) related to several immunological functions, such as proliferation and quantity of lymphocytes. The net result was the same, since both mouse strains showed similar sex induced differences in immune cell populations in the MLNs. CONCLUSIONS: Our data suggests a correlation between microbiota and intestinal immune populations in a sex and strain-specific way. These findings may contribute to the development of more sex and genetic specific treatments for intestinal-related disorders.


Subject(s)
Gastrointestinal Microbiome , Intestinal Mucosa , Sex Characteristics , Animals , Bacteria/genetics , Bacteria/isolation & purification , Colon/immunology , Colon/metabolism , Colon/microbiology , DNA, Bacterial/genetics , Female , Immunity, Mucosal , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Lymph Nodes/immunology , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Species Specificity , T-Lymphocytes/immunology , Tissue Array Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...