Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 50(14): 8107-8126, 2022 08 12.
Article in English | MEDLINE | ID: mdl-35848907

ABSTRACT

Non-CpG PS-ASOs can activate the innate immune system, leading to undesired outcomes. This response can vary-in part-as a function of 2'modifications and sequence. Here we investigated the molecular steps involved in the varied effects of PS-ASOs on the innate immune system. We found that pro-inflammatory PS-ASOs require TLR9 signaling based on the experimental systems used. However, the innate immunity of PS-ASOs does not correlate with their binding affinity with TLR9. Furthermore, the innate immune responses of pro-inflammatory PS-ASOs were reduced by coincubation with non-inflammatory PS-ASOs, suggesting that both pro-inflammatory and non-inflammatory PS-ASOs can interact with TLR9. We show that the kinetics of the PS-ASO innate immune responses can vary, which we speculate may be due to the existence of alternative PS-ASO binding sites on TLR9, leading to full, partial, or no activation of the pathway. In addition, we found that several extracellular proteins, including HMGB1, S100A8 and HRG, enhance the innate immune responses of PS-ASOs. Reduction of the binding affinity by reducing the PS content of PS-ASOs decreased innate immune responses, suggesting that PS-ASO-protein complexes may be sensed by TLR9. These findings thus provide critical information concerning how PS-ASOs can interact with and activate TLR9.


Subject(s)
Immunity, Innate , Oligonucleotides, Antisense , Phosphorothioate Oligonucleotides , Toll-Like Receptor 9 , Calgranulin A , Endocytosis , HMGB1 Protein , Humans , Oligonucleotides, Antisense/metabolism , Phosphorothioate Oligonucleotides/metabolism , Proteins , Toll-Like Receptor 9/metabolism
2.
Molecules ; 24(18)2019 Sep 10.
Article in English | MEDLINE | ID: mdl-31509944

ABSTRACT

Nucleic Acid Therapeutics (NATs), including siRNAs and AntiSense Oligonucleotides (ASOs), have great potential to drug the undruggable genome. Targeting siRNAs and ASOs to specific cell types of interest has driven dramatic improvement in efficacy and reduction in toxicity. Indeed, conjugation of tris-GalNAc to siRNAs and ASOs has shown clinical efficacy in targeting diseases driven by liver hepatocytes. However, targeting non-hepatic diseases with oligonucleotide therapeutics has remained problematic for several reasons, including targeting specific cell types and endosomal escape. Monoclonal antibody (mAb) targeting of siRNAs and ASOs has the potential to deliver these drugs to a variety of specific cell and tissue types. However, most conjugation strategies rely on random chemical conjugation through lysine or cysteine residues resulting in conjugate heterogeneity and a distribution of Drug:Antibody Ratios (DAR). To produce homogeneous DAR-2 conjugates with two siRNAs per mAb, we developed a novel two-step conjugation procedure involving microbial transglutaminase (MTGase) tagging of the antibody C-terminus with an azide-functionalized linker peptide that can be subsequently conjugated to dibenzylcyclooctyne (DBCO) bearing oligonucleotides through azide-alkyne cycloaddition. Antibody-siRNA (and ASO) conjugates (ARCs) produced using this strategy are soluble, chemically defined targeted oligonucleotide therapeutics that have the potential to greatly increase the number of targetable cell types.


Subject(s)
Antibodies/pharmacology , Immunoconjugates/chemistry , Oligonucleotides, Antisense/immunology , RNA, Small Interfering/immunology , Antibodies/chemistry , Antibodies/immunology , Azides/chemistry , Cell Lineage/drug effects , Cycloaddition Reaction , Cyclooctanes/chemistry , Drug Delivery Systems , Endosomes/drug effects , Hepatocytes/drug effects , Hepatocytes/immunology , Humans , Immunoconjugates/immunology , Immunoconjugates/pharmacology , Liver/drug effects , Liver/immunology , Oligonucleotides, Antisense/antagonists & inhibitors , Oligonucleotides, Antisense/chemistry , Peptides/chemistry , Peptides/pharmacology , RNA, Small Interfering/antagonists & inhibitors , RNA, Small Interfering/chemistry , Transglutaminases/chemistry , Transglutaminases/immunology , Transglutaminases/pharmacology
3.
Nat Commun ; 8(1): 1034, 2017 10 18.
Article in English | MEDLINE | ID: mdl-29044119

ABSTRACT

The WNT/ß-catenin signaling pathway is a prominent player in many developmental processes, including gastrulation, anterior-posterior axis specification, organ and tissue development, and homeostasis. Here, we use human pluripotent stem cells (hPSCs) to study the dynamics of the transcriptional response to exogenous activation of the WNT pathway. We describe a mechanism involving the WNT target gene SP5 that leads to termination of the transcriptional program initiated by WNT signaling. Integration of gene expression profiles of wild-type and SP5 mutant cells with genome-wide SP5 binding events reveals that SP5 acts to diminish expression of genes previously activated by the WNT pathway. Furthermore, we show that activation of SP5 by WNT signaling is most robust in cells with developmental potential, such as stem cells. These findings indicate a mechanism by which the developmental WNT signaling pathway reins in expression of transcriptional programs.


Subject(s)
DNA-Binding Proteins/metabolism , Pluripotent Stem Cells/metabolism , Transcription Factors/metabolism , Wnt3A Protein/metabolism , Cell Line , DNA-Binding Proteins/genetics , Gene Expression Regulation , Humans , Pluripotent Stem Cells/cytology , Transcription Factors/genetics , Wnt Signaling Pathway , Wnt3A Protein/genetics , beta Catenin/genetics , beta Catenin/metabolism
4.
Methods Mol Biol ; 1481: 161-81, 2016.
Article in English | MEDLINE | ID: mdl-27590161

ABSTRACT

Human pluripotent stem cells (hPSCs) may revolutionize medical practice by providing: (a) a renewable source of cells for tissue replacement therapies, (b) a powerful system to model human diseases in a dish, and (c) a platform for examining efficacy and safety of novel drugs. Furthermore, these cells offer a unique opportunity to study early human development in vitro, in particular, the process by which a seemingly uniform cell population interacts to give rise to the three main embryonic lineages: ectoderm, endoderm. and mesoderm. This process of lineage allocation is regulated by a number of inductive signals that are mediated by growth factors, including FGF, TGFß, and Wnt. In this book chapter, we introduce a set of tools, methods, and protocols to specifically manipulate the Wnt signaling pathway with the intention of altering the cell fate outcome of hPSCs.


Subject(s)
Cell Culture Techniques/methods , Cell Differentiation/genetics , Human Embryonic Stem Cells/cytology , Wnt Signaling Pathway/genetics , Ectoderm/growth & development , Endoderm/growth & development , Human Embryonic Stem Cells/metabolism , Humans , Mesoderm/growth & development , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism
5.
Proc Natl Acad Sci U S A ; 111(4): 1409-14, 2014 Jan 28.
Article in English | MEDLINE | ID: mdl-24474766

ABSTRACT

WNT signaling is involved in maintaining stem cells in an undifferentiated state; however, it is often unclear which WNTs and WNT receptors are mediating these activities. Here we examined the role of the WNT receptor FZD7 in maintaining human embryonic stem cells (hESCs) in an undifferentiated and pluripotent state. FZD7 expression is significantly elevated in undifferentiated cells relative to differentiated cell populations, and interfering with its expression or function, either by short hairpin RNA-mediated knockdown or with a fragment antigen binding (Fab) molecule directed against FZD7, disrupts the pluripotent state of hESCs. The FZD7-specific Fab blocks signaling by Wnt3a protein by down-regulating FZD7 protein levels, suggesting that FZD7 transduces Wnt signals to activate Wnt/ß-catenin signaling. These results demonstrate that FZD7 encodes a regulator of the pluripotent state and that hESCs require endogenous WNT/ß-catenin signaling through FZD7 to maintain an undifferentiated phenotype.


Subject(s)
Embryonic Stem Cells/cytology , Frizzled Receptors/physiology , Pluripotent Stem Cells/cytology , Animals , Cell Differentiation , Cell Line , Frizzled Receptors/metabolism , Humans , Mice , Signal Transduction , Wnt3A Protein/metabolism
6.
Cell ; 135(7): 1201-12, 2008 Dec 26.
Article in English | MEDLINE | ID: mdl-19109892

ABSTRACT

Evidence for active DNA demethylation in vertebrates is accumulating, but the mechanisms and enzymes remain unclear. Using zebrafish embryos we provide evidence for 5-methylcytosine (5-meC) removal in vivo via the coupling of a 5-meC deaminase (AID, which converts 5-meC to thymine) and a G:T mismatch-specific thymine glycosylase (Mbd4). The injection of methylated DNA into embryos induced a potent DNA demethylation activity, which was attenuated by depletion of AID or the non enzymatic factor Gadd45. Remarkably, overexpression of the deaminase/glycosylase pair AID/Mbd4 in vivo caused demethylation of the bulk genome and injected methylated DNA fragments, likely involving a G:T intermediate. Furthermore, AID or Mbd4 knockdown caused the remethylation of a set of common genes. Finally, Gadd45 promoted demethylation and enhanced functional interactions between deaminase/glycosylase pairs. Our results provide evidence for a coupled mechanism of 5-meC demethylation, whereby AID deaminates 5-meC, followed by thymine base excision by Mbd4, promoted by Gadd45.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Glycosylases/metabolism , DNA Methylation , Intracellular Signaling Peptides and Proteins/metabolism , Thymine DNA Glycosylase/metabolism , Zebrafish Proteins/metabolism , Zebrafish/metabolism , Animals , Cell Line , Cytidine Deaminase/metabolism , Embryo, Nonmammalian/metabolism , Humans , Neuropeptides/metabolism , Up-Regulation , GADD45 Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...